DOI QR코드

DOI QR Code

A study on the synthesis of lanthanum oxide (La2O3) from NaLa(SO4)2·H2O by metathesis reaction

NaLa(SO4)2·H2O 결정상으로부터 이온치환반응에 의한 산화란탄 (La2O3) 분말 합성에 관한 연구

  • Kim, Dae-Weon (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Ahn, Nak-Kyoon (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Shim, Hyun-Woo (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Lee, Chan-Gi (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering (IAE)) ;
  • Choi, Hee-Lack (Department of Materials Science and Engineering, Pukyong National University) ;
  • Hong, Hyun Seon (Sungshin Women's University, Dept. of Environment & Energy Engineering)
  • 김대원 (고등기술연구원 융합소재연구센터) ;
  • 안낙균 (고등기술연구원 융합소재연구센터) ;
  • 심현우 (고등기술연구원 융합소재연구센터) ;
  • 이찬기 (고등기술연구원 융합소재연구센터) ;
  • 최희락 (부경대학교 재료공학과) ;
  • 홍현선 (성신여자대학교 청정융합에너지공학과)
  • Received : 2018.08.22
  • Accepted : 2018.09.18
  • Published : 2018.10.31

Abstract

The recovery of rare earth elements (REE) including La, Nd and Ce from spent batteries is important issues to reuse scarce resources. Herein, we present a simple recovery process to obtain lanthanum oxide ($La_2O_3$) from spent Ni-MH batteries, and demonstrate the conversion mechanism from $NaLa(SO_4)_2{\cdot}H_2O$ to $La_2O_3$. This strategy requires the initial preparation of $NaLa(SO_4)_2{\cdot}H_2O$ and subsequent metathesis reaction with $Na_2CO_3$ at $70^{\circ}C$. This metathesis reaction resulted in the crystalline lanthanum carbonate hydrate ($La_2(CO_3)_3{\cdot}xH_2O$) powder with plate-like morphology. On the basis of TGA result, the $La_2(CO_3)_3{\cdot}xH_2O$ powder was calcined in air at three different temperatures, that is, $300^{\circ}C$, $500^{\circ}C$, and $1000^{\circ}C$. As the calcination temperature increased, the morphology of powder was changed; prism-like ($NaLa(SO_4)_2{\cdot}H_2O$) ${\rightarrow}$ platelike ($La_2(CO_3)_3{\cdot}xH_2O$) ${\rightarrow}$ aggregated irregular shape ($La_2O_3$). Futhermore, XRD results indicated that the crystalline $La_2O_3$ could be synthesized after the metathesis reaction with $Na_2CO_3$, followed by heat-treatment at $1000^{\circ}C$, along with a change of crystallographic structures; $NaLa(SO_4)_2{\cdot}H_2O$ ${\rightarrow}$ $La_2(CO_3)_3{\cdot}xH_2O$ ${\rightarrow}$ $La_2O_3$.

폐니켈수소전지에 함유된 희토류들의 회수는 자원 재활용을 위한 중요한 이슈 중의 하나이다. 본 논문에서는 폐니켈수소전지에 함유된 주요 희토류 성분 중의 하나인 란탄의 회수와 산화물로 전환되는 메커니즘 연구를 위하여, 재활용 공정에서 확보되는 희토류 침전물($NaRE(SO_4)_2{\cdot}H_2O$, RE = La, Nd, Ce)과 같은 단일 조성의 $NaLa(SO_4)_2{\cdot}H_2O$ 분말을 합성하였다. 합성된 분말은 $70^{\circ}C$에서 진행된 탄산나트륨과의 이온치환반응을 통해 판상형의 $La_2(CO_3)_3{\cdot}xH_2O$ 결정상을 나타냈으며, 비교를 위해 상온에서 진행된 치환 반응을 진행하였다. 이후 산화란탄 합성을 위해 TG 분석 결과를 바탕으로, $La_2(CO_3)_3{\cdot}xH_2O$ 분말을 $300^{\circ}C$, $500^{\circ}C$$1000^{\circ}C$에서 후열처리를 진행하였으며, 이에 따른 결정구조의 변화를 분석하였다. FESEM 결과 본 연구에서 합성된 각각의 분말들은 각기둥($NaLa(SO_4)_2{\cdot}H_2O$), 판상($La_2(CO_3)_3{\cdot}xH_2O$) 및 특정 형상 없이 불규칙적으로 응집된 형태($La_2O_3$)를 나타내었다.

Keywords

References

  1. P. Zhang, T. Yokoyama, O. Itabashi, Y. Wakui, T.M. suzuki and K. Inoue "Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries", Hydrometallurgy 50 (1998) 61. https://doi.org/10.1016/S0304-386X(98)00046-2
  2. D.A. Bertuol, A.M. Bernardes and J.A.S. Tenorio, "Spent NiMH batteries - The role of selective precipitation in the recovery of valuable metals", J. of Power Sources 193 (2009) 914. https://doi.org/10.1016/j.jpowsour.2009.05.014
  3. L.E.O.C. Rodrigues and M.B. Mansur, "Hydrometallurgical separation of rare earth elements, cobalt and nickel from spent nickel-metal-hydride batteries", J. of Power Sources 195 (2010) 3735. https://doi.org/10.1016/j.jpowsour.2009.12.071
  4. P. Dvorak and H.N. Vu, "Obtaining nickel and cobalt from spent NiMH batteries", Journal of the Polish Mineral Engineering Society 16 (2015) 1.
  5. J.S. Kim, H.S. Yoon, S.D. Kim, C.J. Kim and J.Y. Lee, "Caustic soda decomposition and leaching of monazite ing Hong-Cheon area deposit", J. of Korean Inst. of Resources Recycling 13 (2004) 11.
  6. M.S. Lee and H.S. Jeon, "Extractive metallurgy and separation technology of rare earth ores", J. of Korean Inst. of Resources Recycling 19 (2010) 27.
  7. R.D. Abreu and C.A. Morais, "Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide", Minerals Engineering 23 (2010) 536. https://doi.org/10.1016/j.mineng.2010.03.010
  8. N.K. Ahn, D.W. Kim and D.H. Yang, "A study on recovery of rare Earth and acid leaching for wet recycling of waste NiMH secondary battery", J. of Korean Inst. of Resources Recycling 27 (2017) 1.
  9. N.K. Ahn, D.W. Kim, H.W. Shim, J.H. Park and J.J. Park, "A study on recovery of rare earth oxide powders from waste NiMH batteries", J. of the Korean Crystal Growth and Crystal Technology 2 (2018) 85.
  10. D.W. Kim, N.K. Ahn, H.W. Shim, K.S. Park and H.L. Choi, "A study on the preparation of rare Earth oxide powder for rare Earth precipitates recovered from spent Ni-MH batteries", J. Korean Powder Metall. Inst. 25 (2018) 213. https://doi.org/10.4150/KPMI.2018.25.3.213
  11. C.K. Gupta and N. Krishnamurthy, "Extractive metallurgy of rare earths", Int. Mater. Rev. 37 (1992) 197. https://doi.org/10.1179/imr.1992.37.1.197
  12. X. Zhang, C. He, L. Wang, J. Liu, M. Deng and Q. Feng, "Non-isothermal kinetic analysis of thermal dehydration of $La_2(CO_3)_3{\cdot}3.4H_2O$ in air", Trans. Nonferrous Met. Soc. China 24 (2014) 3378. https://doi.org/10.1016/S1003-6326(14)63480-4
  13. B. Vallina, J.D.R. Blanco, A.P. Brown, J.A. Blanco and L.G. Benning, "The role of amorphous precursors in the crystallization of La and Nd carbonates", Nanoscale 7 (2015) 12166. https://doi.org/10.1039/C5NR01497B
  14. P. Kim, A. Anderko, A. Navrotsky and R.E. Riman, "Trends in structure and thermodynamic properties of normal rare Earth carbonates and rare Earth hydroxycarbonates", Minerals 8 (2018) 106. https://doi.org/10.3390/min8030106