DOI QR코드

DOI QR Code

Attenuation of Anemia by Relmα in LPS-Induced Inflammatory Response

  • Lee, Mi-Ran (Dept. of Biomedical Laboratory Science, Jungwon University)
  • Received : 2018.10.08
  • Accepted : 2018.10.24
  • Published : 2018.10.31

Abstract

In this paper, we propose to evaluate the effect of resistin-like molecule alpha ($Relm{\alpha}$) on the progression of anemia of inflammation. Anemia of inflammation is a common feature of inflammatory disorders, including chronic kidney disease, infections, and rheumatoid arthritis. $Relm{\alpha}$ is highly up-regulated in various inflammatory states, especially those involving asthma, intestinal inflammation, and parasitic diseases, and regulates the pathogenesis of those diseases. However, the role of $Relm{\alpha}$ in anemia of inflammation is unknown. To explore the roles of $Relm{\alpha}$ in anemia of inflammation in vivo, we generated mouse model of the disease by injecting 0.25 mg/kg lipopolysaccharides (LPS) intraperitoneally into $Relm{\alpha}-deficient$ and wild-type (WT) mice daily for 10 days. Research data was expressed as differences between LPS-treated $Relm{\alpha}-deficient$ and WT mice by a two-tailed non-parametric Mann-Whitney U-test using GraphPad Instat program. The results of the study are as follows: LPS-treated $Relm{\alpha}-deficient$ mice had significantly (p<0.05) lower hemoglobin contents, hematocrit levels and red blood cell indices including mean corpuscular volume, mean corpuscular hemoglobin than WT controls. This decrease was accompanied by significant (p<0.05) increase in total white blood cell and monocyte counts in the blood. However, there was no significant difference in mRNA levels of hepatic hepcidin and renal erythropoietin between the two animal groups. Taken together, these results indicates that $Relm{\alpha}$ deficiency exacerbates the anemia by increasing inflammation, suggesting therapeutic value of $Relm{\alpha}$ in the treatment of anemia of inflammation.

Keywords

References

  1. N. J. Kassebaum, R. Jasrasaria, M. Naghavi, S. K. Wulf, N. Johns, R. Lozano, M. Regan, D. Weatherall, D. P. Chou, T. P. Eisele, S. R. Flaxman, R. L. Pullan, S. J. Brooker, and C. J. Murray, “A systematic analysis of global anemia burden from 1990 to 2010,” Blood, Vol. 123, No. 5, pp. 615-624, Jan. 2014. https://doi.org/10.1182/blood-2013-06-508325
  2. C. Madeddu, G. Gramignano, G. Astara, R. Demontis, E. Sanna, V. Atzeni, and A. Maccio, "Pathogenesis and Treatment Options of Cancer Related Anemia: Perspective for a Targeted Mechanism-Based Approach," Front Physiol, Vol. 9, pp. 1294, Sep. 2018. https://doi.org/10.3389/fphys.2018.01294
  3. C. M. Witmer, “Hematologic manifestations of systemic disease (including iron deficiency, anemia of inflammation and DIC),” Pediatr Clin North Am, Vol. 60, No. 6, pp. 1337-1348, Oct. 2013. https://doi.org/10.1016/j.pcl.2013.08.012
  4. G. Weiss and L. T. Goodnough, “Anemia of chronic disease,” N Engl J Med, Vol. 352, No. 10, pp. 1011-1023, Mar. 2005. https://doi.org/10.1056/NEJMra041809
  5. C. S. Kim, "Anemia of Chronic Disease," J Korean Med Assoc, Vol. 49, No. 10, pp. 920-926, 2006 https://doi.org/10.5124/jkma.2006.49.10.920
  6. N. I. Solomakhina, E. S. Nakhodnova, and Y. N. Belenkov, "[Anemia of chronic disease and iron deficiency anemia: Comparative characteristics of ferrokinetic parameters and their relationship with inflammation in late middle-aged and elderly patients with CHF]," Kardiologiia (S8), pp. 58-64, Aug. 2018.
  7. P. Huang, J. Wang, X. Lin, F. F. Yang, and J. H. Tan, "Effects of IL-10 on iron metabolism in LPS-induced inflammatory mice via modulating hepcidin expression," Eur Rev Med Pharmacol Sci, Vol. 21, No. 15, pp. 3469-3475, Aug. 2017.
  8. L. Kautz, G. Jung, E. V. Valore, S. Rivella, E. Nemeth, and T. Ganz, “Identification of erythroferrone as an erythroid regulator of iron metabolism,” Nat Genet, Vol. 46, No. 7, pp. 678-684, Jul. 2014. https://doi.org/10.1038/ng.2996
  9. T. Ganz, “Systemic iron homeostasis,” Physiol Rev, Vol. 93, No. 4, pp. 1721-1741, Oct. 2013. https://doi.org/10.1152/physrev.00008.2013
  10. T. Ganz, “Molecular pathogenesis of anemia of chronic disease,” Pediatric blood & cancer, Vol. 46, No. 5, pp. 554-557, May 2006. https://doi.org/10.1002/pbc.20656
  11. E. Nemeth, S. Rivera, V. Gabayan, C. Keller, S. Taudorf, B. K. Pedersen, and T. Ganz, “IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin,” The Journal of clinical investigation, Vol. 113, No. 9, pp. 1271-1276, May 2004. https://doi.org/10.1172/JCI200420945
  12. A. Krstic, J. Kocic, V. Ilic, S. Mojsilovic, I. Okic-Dordevic, D. Trivanovic, J. F. Santibanez, G. Jovcic, and D. Bugarski, "Effects of IL-17 on erythroid progenitors growth: involvement of MAPKs and GATA transcription factors," J Biol Regul Homeost Agents, Vol. 26, No. 4, pp. 641-652, Oc.t-Dec. 2012.
  13. I. N. Holcomb, R. C. Kabakoff, B. Chan, T. W. Baker, A. Gurney, W. Henzel, C. Nelson, H. B. Lowman, B. D. Wright, N. J. Skelton, G. D. Frantz, D. B. Tumas, F. V. Peale, Jr., D. L. Shelton, and C. C. Hebert, “FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family,” The EMBO journal, Vol. 19, No. 15, pp. 4046-4055, Aug, 2000. https://doi.org/10.1093/emboj/19.15.4046
  14. M. G. Nair, D. W. Cochrane, and J. E. Allen, “Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro,” Immunol Lett, Vol. 85, No. 2, pp. 173-180, Jan, 2003. https://doi.org/10.1016/S0165-2478(02)00225-0
  15. K. Yamaji-Kegan, Q. Su, D. J. Angelini, A. C. Myers, C. Cheadle, and R. A. Johns, “Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMalpha) increases lung inflammation and activates pulmonary microvascular endothelial cells via an IL-4-dependent mechanism,” J Immunol, Vol. 185, No. 9, pp. 5539-5548, Nov. 2010. https://doi.org/10.4049/jimmunol.0904021
  16. A. Munitz, L. Seidu, E. T. Cole, R. Ahrens, S. P. Hogan, and M. E. Rothenberg, “Resistin-like molecule alpha decreases glucose tolerance during intestinal inflammation,” J Immunol, Vol. 182, No. 4, pp. 2357-2363, Feb. 2009. https://doi.org/10.4049/jimmunol.0803130
  17. L. C. Osborne, K. L. Joyce, T. Alenghat, G. F. Sonnenberg, P. R. Giacomin, Y. Du, K. S. Bergstrom, B. A. Vallance, and M. G. Nair, “Resistin-like molecule alpha promotes pathogenic Th17 cell responses and bacterial-induced intestinal inflammation,” J Immunol, Vol. 190, No. 5, pp. 2292-2300, Mar. 2013. https://doi.org/10.4049/jimmunol.1200706
  18. A. Munitz, A. Waddell, L. Seidu, E. T. Cole, R. Ahrens, S. P. Hogan, and M. E. Rothenberg, “Resistin-like molecule alpha enhances myeloid cell activation and promotes colitis,” J Allergy Clin Immunol, Vol. 122, No. 6, pp. 1200-1207 e1201, Dec. 2008. https://doi.org/10.1016/j.jaci.2008.10.017
  19. P. Mavi, R. Niranjan, P. Dutt, A. Zaidi, J. S. Shukla, T. Korfhagen, and A. Mishra, “Allergen-induced resistin-like molecule-${\alpha}$ promotes esophageal epithelial cell hyperplasia in eosinophilic esophagitis,” Am J Physiol Gastrointest Liver Physiol, Vol. 309, No. 4, pp. G281, Aug. 2015. https://doi.org/10.1152/ajpgi.zh3-6953-corr.2015
  20. J. T. Pesce, T. R. Ramalingam, M. S. Wilson, M. M. Mentink-Kane, R. W. Thompson, A. W. Cheever, J. F. Urban, Jr., and T. A. Wynn, “Retnla (relmalpha/fizz1) suppresses helminth-induced Th2- type immunity,” PLoS pathogens, Vol. 5, No. 4, pp. e1000393, Apr. 2009. https://doi.org/10.1371/journal.ppat.1000393
  21. M. R. Lee, C. J. Lim, Y. H. Lee, J. G. Park, S. K. Sonn, M. N. Lee, I. H. Jung, S. J. Jeong, S. Jeon, M. Lee, K. S. Oh, Y. Yang, J. B. Kim, H. S. Choi, W. Jeong, T. S. Jeong, W. K. Yoon, H. C. Kim, J. H. Choi, and G. T. Oh, "The adipokine Retnla modulates cholesterol homeostasis in hyperlipidemic mice," Nature communications, Vol. 5, pp. 4410, Jul. 2014. https://doi.org/10.1038/ncomms5410
  22. M. R. Lee, D. Shim, J. Yoon, H. S. Jang, S. W. Oh, S. H. Suh, J. H. Choi, and G. T. Oh, “Retnla overexpression attenuates allergic inflammation of the airway,” PloS one, Vol. 9, No. 11, pp. e112666, Nov. 2014. https://doi.org/10.1371/journal.pone.0112666
  23. M. Triantafilou and K. Triantafilou, “The dynamics of LPS recognition: complex orchestration of multiple receptors,” J Endotoxin Res, Vol. 11, No. 1, pp. 5-11, 2005. https://doi.org/10.1177/09680519050110010401
  24. T. Yokochi, "A new experimental murine model for lipopolysaccharide-mediated lethal shock with lung injury," Innate Immun, Vol. 18 No. 2, pp. 364-370, Apr. 2012. https://doi.org/10.1177/1753425911410236
  25. H. Z. Wang, Y. X. He, C. J. Yang, W. Zhou, and C. G. Zou, “Hepcidin is regulated during blood-stage malaria and plays a protective role in malaria infection,” J Immunol, Vol. 187, No. 12, pp. 6410-6416, Dec. 2011. https://doi.org/10.4049/jimmunol.1101436