DOI QR코드

DOI QR Code

Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method

  • Golafshani, Emadaldin M. (Department of Civil Engineering, Architecture and Art, Science and Research Branch, Islamic Azad University) ;
  • Pazouki, Gholamreza (Department of Civil Engineering, Architecture and Art, Science and Research Branch, Islamic Azad University)
  • Received : 2018.04.29
  • Accepted : 2018.10.11
  • Published : 2018.10.25

Abstract

The compressive strength of self-compacting concrete (SCC) containing fly ash (FA) is highly related to its constituents. The principal purpose of this paper is to investigate the efficiency of hybrid fuzzy radial basis function neural network with biogeography-based optimization (FRBFNN-BBO) for predicting the compressive strength of SCC containing FA based on its mix design i.e., cement, fly ash, water, fine aggregate, coarse aggregate, superplasticizer, and age. In this regard, biogeography-based optimization (BBO) is applied for the optimal design of fuzzy radial basis function neural network (FRBFNN) and the proposed model, implemented in a MATLAB environment, is constructed, trained and tested using 338 available sets of data obtained from 24 different published literature sources. Moreover, the artificial neural network and three types of radial basis function neural network models are applied to compare the efficiency of the proposed model. The statistical analysis results strongly showed that the proposed FRBFNN-BBO model has good performance in desirable accuracy for predicting the compressive strength of SCC with fly ash.

Keywords

References

  1. Aiyer, B.G., Kim, D., Karingattikkal, N., Samui, P. and Rao, P.R. (2014), "Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine", KSCE. J. Civil Eng., 18(6), 1753-1758. https://doi.org/10.1007/s12205-014-0524-0
  2. Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. https://doi.org/10.12989/CAC.2018.21.1.047
  3. Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
  4. Baykasoǧlu, A., Oztas, A. and Ozbay, E. (2009), "Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches", Exp. Syst. Appl., 36(3), 6145-6155. https://doi.org/10.1016/j.eswa.2008.07.017
  5. Behnood, A. and Golafshani, E.M. (2018), "Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves", J. Clean. Prod., 202, 54-64. https://doi.org/10.1016/j.jclepro.2018.08.065
  6. Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Softw., 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
  7. Bingol, A.F. and Tohumcu, I. (2013), "Effects of different curing regimes on the compressive strength properties of selfcompacting concrete incorporating fly ash and silica fume", Mater. Des., 51, 12-18. https://doi.org/10.1016/j.matdes.2013.03.106
  8. Boga, A.R., Ozturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B. Eng., 45(1), 688-696. https://doi.org/10.1016/j.compositesb.2012.05.054
  9. Bouzoubaa, N. and Lachemi, M. (2001), "Self Compacting Concrete Incorporating High-Volumes of Class F Fly Ash : Preliminary Results", Cement Concrete Res., 31(3), 413-420. https://doi.org/10.1016/S0008-8846(00)00504-4
  10. Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180(20), 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201
  11. Bui, V.K., Akkaya, Y. and Shah, S.P. (2002), "Rheological model for self-consolidating concrete", ACI. Mater. J., 99(6), 549-559.
  12. Castelli, M., Vanneschi, L. and Silva, S. (2013), "Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators", Exp. Syst. Appl., 40(17), 6856-6862. https://doi.org/10.1016/j.eswa.2013.06.037
  13. Chabib, H. El and Syed, A. (2012), "Properties of selfconsolidating concrete made with high volumes of supplementary cementitious materials", J. Mater. Civil Eng., 25(11), 1579-1586.
  14. Cheng, M.Y., Chou, J.S., Roy, A.F.V. and Wu, Y.W. (2012), "Highperformance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model", Autom. Constr., 28, 106-115. https://doi.org/10.1016/j.autcon.2012.07.004
  15. Cheng, M.Y., Firdausi, P.M. and Prayogo, D. (2014), "Highperformance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)", Eng. Appl. Artif. Intell., 29, 104-113. https://doi.org/10.1016/j.engappai.2013.11.014
  16. Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
  17. da Silva, P.R. and de Brito, J. (2015), "Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler", Constr. Build. Mater., 86, 101-112. https://doi.org/10.1016/j.conbuildmat.2015.03.110
  18. El-Dieb, A.S. and Reda Taha, M.M. (2012), "Flow characteristics and acceptance criteria of fiber-reinforced self-compacted concrete (FR-SCC)", Constr. Build. Mater., 27(1), 585-596. https://doi.org/10.1016/j.conbuildmat.2011.07.004
  19. Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater. Struct., 46(12), 2109-2119. https://doi.org/10.1617/s11527-013-0039-z
  20. Gesoglu, M. and Ozbay, E. (2007), "Effects of mineral admixtures on fresh and hardened properties of self-compacting concretes: binary, ternary and quaternary systems", Mater. Struct., 40(9), 923-937. https://doi.org/10.1617/s11527-007-9242-0
  21. Ghezal, A. and Khayat, K.H. (2002), "Optimizing selfconsolidating concrete with limestone filler by using statistical factorial design methods", ACI. Mater. J., 99(3), 264-272.
  22. Gilan, S.S., Jovein, H.B. and Ramezanianpour, A.A. (2012), "Hybrid support vector regression-Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin", Constr. Build. Mater., 34, 321-329. https://doi.org/10.1016/j.conbuildmat.2012.02.038
  23. Golafshani, E.M. and Ashour, A. (2016a), "A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups", Adv. Eng. Softw., 97, 29-39. https://doi.org/10.1016/j.advengsoft.2016.02.007
  24. Golafshani, E.M. and Ashour, A. (2016b), "Prediction of selfcompacting concrete elastic modulus using two symbolic regression techniques", Autom. Constr., 64, 7-19. https://doi.org/10.1016/j.autcon.2015.12.026
  25. Golafshani, E.M., Rahai, A. and Sebt, M.H. (2014), "Bond behavior of steel and GFRP bars in self-compacting concrete", Constr. Build. Mater., 61, 230-240. https://doi.org/10.1016/j.conbuildmat.2014.02.021
  26. Guneyisi, E., Gesoglu, M., Al-Goody, A. and Ipek, S. (2015), "Fresh and rheological behavior of nano-silica and fly ash blended self-compacting concrete", Constr. Build. Mater., 95, 29-44. https://doi.org/10.1016/j.conbuildmat.2015.07.142
  27. Guneyisi, E., Gesolu, M. and Ozbay, E. (201), "Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures", Constr. Build. Mater., 24(10), 1878-1887. https://doi.org/10.1016/j.conbuildmat.2010.04.015
  28. Guo, W., Wang, L. and Wu, Q. (2014), "An analysis of the migration rates for biogeography-based optimization", Inform. Sci., 254, 111-140. https://doi.org/10.1016/j.ins.2013.07.018
  29. Guo, W., Wang, L. and Wu, Q. (2016), "Numerical comparisons of migration models for Multi-objective Biogeography-Based Optimization", Inf. Sci., 328, 302-320. https://doi.org/10.1016/j.ins.2015.07.059
  30. Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the marquardt algorithm", IEEE Tran. Neural Netw., 5(6), 989-993. https://doi.org/10.1109/72.329697
  31. Hartigan, J.A. and Wong, M.A. (1979), "Algorithm AS 136: A Kmeans clustering algorithm", Appl. Stat., 28(1), 100-108. https://doi.org/10.2307/2346830
  32. Ivakhnenko, A.G. (1971), "Polynomial Theory of Complex Systems", IEEE Tran. Syst. Man. Cybern., SMC-1(4), 364-378. https://doi.org/10.1109/TSMC.1971.4308320
  33. Khan, M.I. (2012), "Predicting properties of High Performance Concrete containing composite cementitious materials using Artificial Neural Networks", Autom. Constr., 22, 516-524. https://doi.org/10.1016/j.autcon.2011.11.011
  34. Khatib, J.M. (2008), "Performance of self-compacting concrete containing fly ash", Constr. Build. Mater., 22(9), 1963-1971. https://doi.org/10.1016/j.conbuildmat.2007.07.011
  35. Krishnasamy, U. and Nanjundappan, D. (2016), "Hybrid weighted probabilistic neural network and biogeography based optimization for dynamic economic dispatch of integrated multiple-fuel and wind power plants", Int. J. Electr. Power. Energy Syst., 77, 385-394. https://doi.org/10.1016/j.ijepes.2015.11.022
  36. Le, H.T. and Ludwig, H.M. (2016), "Effect of rice husk ash and other mineral admixtures on properties of self-compacting high performance concrete", Mater. Des., 89, 156-166. https://doi.org/10.1016/j.matdes.2015.09.120
  37. Leung, H.Y., Kim, J., Nadeem, A., Jaganathan, J. and Anwar, M.P. (2016), "Sorptivity of self-compacting concrete containing fly ash and silica fume", Constr. Build. Mater., 113, 369-375. https://doi.org/10.1016/j.conbuildmat.2016.03.071
  38. Liu, M. (2010), "Self-compacting concrete with different levels of pulverized fuel ash", Constr. Build. Mater., 24(7), 1245-1252. https://doi.org/10.1016/j.conbuildmat.2009.12.012
  39. Ma, H., Simon, D., Fei, M. and Xie, Z. (2013), "Variations of biogeography-based optimization and Markov analysis", Inform. Sci., 220, 492-506. https://doi.org/10.1016/j.ins.2012.07.007
  40. Mantas, C.J. and Puche, J.M. (2008), "Artificial neural networks are zero-order TSK fuzzy systems", IEEE Tran. Fuzzy Syst., 16(3), 630-643. https://doi.org/10.1109/TFUZZ.2007.902016
  41. Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034
  42. Melo, K.A. and Carneiro, A.M.P. (2010), "Effect of Metakaolin‟s finesses and content in self-consolidating concrete", Constr. Build. Mater., 24(8), 1529-1535. https://doi.org/10.1016/j.conbuildmat.2010.02.002
  43. Mitra, S. and Basak, J. (2001), "FRBF: A fuzzy radial basis function network", Neur. Comput. Appl., 10(3), 244-252. https://doi.org/10.1007/s521-001-8052-9
  44. Mohamed, H.A. (2011), "Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions", Ain Shams Eng. J., 2(2), 79-86. https://doi.org/10.1016/j.asej.2011.06.001
  45. Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014
  46. Oh, S.K., Kim, W.D., Pedrycz, W. and Seo, K. (2014), "Fuzzy radial basis function neural networks with information granulation and its parallel genetic optimization", Fuzzy Set. Syst., 237, 96-117. https://doi.org/10.1016/j.fss.2013.08.011
  47. Ozawa, K., Maekawa, K. and Okamura, H. (1990), "High performance concrete with high filling ability", Proceedings of the RILEM Symposium, Admixtures for Concrete, Barcelona.
  48. Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming", Constr. Build. Mater., 22(8), 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021
  49. Ozcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
  50. Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-755. https://doi.org/10.1016/j.conbuildmat.2005.01.054
  51. Pala, M., Ozbay, E., Oztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21(2), 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009
  52. Patel, R., Hossain, K.M.A., Shehata, M., Bouzoubaâ, N. and Lachemi, M. (2004), "Development of statistical models for mixture design of high-volume fly ash self-consolidating concrete", ACI. Mater. J., 101(4), 294-302.
  53. Pathak, N. and Siddique, R. (2012), "Properties of selfcompacting-concrete containing fly ash subjected to elevated temperatures", Constr. Build. Mater., 30, 274-280. https://doi.org/10.1016/j.conbuildmat.2011.11.010
  54. Pedrycz, W., Succi, G., Sillitti, A. and Iljazi, J. (2015), "Data description: A general framework of information granules", Knowledge-Based Syst., 80, 98-108.
  55. Peizhuang, W. (1983), "Pattern recognition with fuzzy objective function algorithms (James C. Bezdek)", SIAM Rev., 25(3), 442-442.
  56. Persson, B. (2001), "A comparison between mechanical propelties of self-compacting concrete and the corresponding properties of normal concrete", Cement Concrete Res., 31(2), 193-198. https://doi.org/10.1016/S0008-8846(00)00497-X
  57. Pham, A.D., Hoang, N.D. and Nguyen, Q.T. (2016), "Predicting compressive strength of high-performance concrete using Metaheuristic-Optimized least squares support vector regression", J. Comput. Civil Eng., 30(3), 1-4.
  58. Phan, T.H., Chaouche, M. and Moranville, M. (2006), "Influence of organic admixtures on the rheological behaviour of cement pastes", Cement Concrete Res., 36(10), 1807-1813. https://doi.org/10.1016/j.cemconres.2006.05.028
  59. Pofale, A.D. and Deo, S.V. (2010), "Comparative long term study of concrete mix design procedure for fine aggregate replacement with fly ash by minimum voids method and maximum density method", KSCE. J. Civil Eng., 14(5), 759-764. https://doi.org/10.1007/s12205-010-0911-0
  60. Rebouh, R., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structure", Constr. Build. Mater., 149, 778-789. https://doi.org/10.1016/j.conbuildmat.2017.05.165
  61. Roh, S.B., Oh, S.K. and Pedrycz, W. (2011), "Design of fuzzy radial basis function-based polynomial neural networks", Fuzzy Set. Syst., 185(1), 15-37. https://doi.org/10.1016/j.fss.2011.06.014
  62. Saha, P., Prasad, M.L.V. and RathishKumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete., 20(1), 31-38.
  63. Sahmaran, M., Christianto, H.A. and Yaman, I.O. (2006), "The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars", Cement Concrete Compos., 28(5), 432-440. https://doi.org/10.1016/j.cemconcomp.2005.12.003
  64. Sahmaran, M., Lachemi, M., Erdem, T.K. and Yucel, H.E. (2011), "Use of spent foundry sand and fly ash for the development of green self-consolidating concrete", Mater. Struct., 44(7), 1193-1204. https://doi.org/10.1617/s11527-010-9692-7
  65. Sanchez, L., Couso, I. and Casillas, J. (2009), "Genetic learning of fuzzy rules based on low quality data", Fuzzy Set. Syst., 160(17), 2524-2552. https://doi.org/10.1016/j.fss.2009.03.004
  66. Sandhir, R.P., Muhuri, S. and Nayak, T.K. (2012), "Dynamic fuzzy c-means (dFCM) clustering and its application to calorimetric data reconstruction in high-energy physics", Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., DOI: 10.1016/j.nima.2012.04.023.
  67. Saridemir, M. (2009a), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Softw., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008
  68. Saridemir, M. (2009b), "Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks", Adv. Eng. Softw., 40(5), 350-355. https://doi.org/10.1016/j.advengsoft.2008.05.002
  69. Saridemir, M. (2014), "Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design", Mater. Des., 56, 297-304. https://doi.org/10.1016/j.matdes.2013.10.073
  70. Saridemir, M., Topcu, I.B., Ozcan, F. and Severcan, M.H. (2009), "Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic", Constr. Build. Mater., 23(3), 1279-1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
  71. Shaikh, F.U.A. and Supit, S.W.M. (2014), "Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate $(CaCO_3)$ nanoparticles", Constr. Build. Mater., 70, 309-321. https://doi.org/10.1016/j.conbuildmat.2014.07.099
  72. Shaikh, F.U.A. and Supit, S.W.M. (2015), "Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA)", Constr. Build. Mater., 82, 192-205. https://doi.org/10.1016/j.conbuildmat.2015.02.068
  73. Siad, H., Mesbah, H.A., Mouli, M., Escadeillas, G. and Khelafi, H. (2014), "Influence of mineral admixtures on the permeation properties of self-compacting concrete at different ages", Arab. J. Sci. Eng., 39(5), 3641-3649. https://doi.org/10.1007/s13369-014-1055-1
  74. Siddique, R. (2011), "Properties of self-compacting concrete containing class F fly ash", Mater Des., 32(3), 1501-1507. https://doi.org/10.1016/j.matdes.2010.08.043
  75. Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Softw., 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016
  76. Siddique, R., Aggarwal, P. and Aggarwal, Y. (2012), "Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash", Constr. Build. Mater., 29, 73-81. https://doi.org/10.1016/j.conbuildmat.2011.10.035
  77. Simon, D. (2008), "Biogeography-Based Optimization", IEEE Tran. Evol. Comput., 12(6), 702-713. https://doi.org/10.1109/TEVC.2008.919004
  78. Slonski, M. (2010), "A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks", Comput. Struct., 88(21-22), 1248-1253. https://doi.org/10.1016/j.compstruc.2010.07.003
  79. Sonebi, M. (2004), "Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans", Cement Concrete Res., 34(7), 1199-1208. https://doi.org/10.1016/j.cemconres.2003.12.022
  80. Sonebi, M. and Cevik, A. (2009a), "Genetic programming based formulation for fresh and hardened properties of selfcompacting concrete containing pulverised fuel ash", Constr. Build. Mater., 23(7), 2614-2622. https://doi.org/10.1016/j.conbuildmat.2009.02.012
  81. Sonebi, M. and Cevik, A. (2009b), "Prediction of fresh and hardened properties of self-consolidating concrete using neurofuzzy approach", J. Mater. Civil Eng., 21(11), 672-679. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(672)
  82. Sukumar, B., Nagamani, K. and Srinivasa Raghavan, R. (2008), "Evaluation of strength at early ages of self-compacting concrete with high volume fly ash", Constr. Build. Mater., 22(7), 1394-1401. https://doi.org/10.1016/j.conbuildmat.2007.04.005
  83. Tayfur, G., Erdem, T.K. and Onder, K. (2014), "Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks", J. Mater. Civil Eng., 26(11), 04014079. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000985
  84. Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
  85. Ulucan, Z.C., Turk, K. and Karatas, M. (2008), "Effect of mineral admixtures on the correlation between ultrasonic velocity and compressive strength for self-compacting concrete", Russ. J. Nondestruct. Test., 44(5), 367-374. https://doi.org/10.1134/S1061830908050100
  86. Utilisation, F. (2008), 2nd Annual International Summit, New Dehli, India.
  87. Uysal, M. and Sumer, M. (2011), "Performance of self-compacting concrete containing different mineral admixtures", Constr. Build. Mater., 25(11), 4112-4120. https://doi.org/10.1016/j.conbuildmat.2011.04.032
  88. Uysal, M. and Tanyildizi, H. (2011), "Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network", Constr. Build. Mater., 25(11), 4105-4111. https://doi.org/10.1016/j.conbuildmat.2010.11.108
  89. Uysal, M. and Tanyildizi, H. (2012), "Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network", Constr. Build. Mater., 27(1), 404-414. https://doi.org/10.1016/j.conbuildmat.2011.07.028
  90. Valipour, M., Pargar, F., Shekarchi, M. and Khani, S. (2013), "Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study", Constr. Build. Mater., 41, 879-888. https://doi.org/10.1016/j.conbuildmat.2012.11.054
  91. Yang, Y.K., Sun, T.Y., Huo, C.L., Yu, Y.H., Liu, C.C. and Tsai, C.H. (2013), "A novel self-constructing Radial Basis Function Neural-Fuzzy System", Appl. Soft Comput. J., 13(5), 2390-2404. https://doi.org/10.1016/j.asoc.2013.01.023
  92. Yu, J. and Duan, H. (2013), "Artificial Bee Colony approach to information granulation-based fuzzy radial basis function neural networks for image fusion", Opt. Int. J. Light Electron. Opt., 127(17), 3103-3111.
  93. Zhao, H., Sun, W., Wu, X. and Gao, B. (2015), "The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures", J. Clean. Prod., 95, 66-74. https://doi.org/10.1016/j.jclepro.2015.02.050
  94. Zheng, Y.J., Ling, H.F. and Xue, J.Y. (2014), "Ecogeographybased optimization: Enhancing biogeography-based optimization with ecogeographic barriers and differentiations", Comput. Oper. Res., 50, 115-127. https://doi.org/10.1016/j.cor.2014.04.013
  95. Zhu, W. and Bartos, P.J.M. (2003), "Permeation properties of selfcompacting concrete", Cement Concrete Res., 33(6), 921-926. https://doi.org/10.1016/S0008-8846(02)01090-6
  96. Zhu, W., Gibbs, J.C. and Bartos, P.J.M. (2001), "Uniformity of in situ properties of self-compacting concrete in full-scale structural elements", Cement Concrete Compos., 23(1), 57-64. https://doi.org/10.1016/S0958-9465(00)00053-6

Cited by

  1. Prediction of concrete spall damage under blast: Neural approach with synthetic data vol.26, pp.6, 2018, https://doi.org/10.12989/cac.2020.26.6.533