References
- Aiyer, B.G., Kim, D., Karingattikkal, N., Samui, P. and Rao, P.R. (2014), "Prediction of compressive strength of self-compacting concrete using least square support vector machine and relevance vector machine", KSCE. J. Civil Eng., 18(6), 1753-1758. https://doi.org/10.1007/s12205-014-0524-0
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. https://doi.org/10.12989/CAC.2018.21.1.047
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38(8), 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
- Baykasoǧlu, A., Oztas, A. and Ozbay, E. (2009), "Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches", Exp. Syst. Appl., 36(3), 6145-6155. https://doi.org/10.1016/j.eswa.2008.07.017
- Behnood, A. and Golafshani, E.M. (2018), "Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves", J. Clean. Prod., 202, 54-64. https://doi.org/10.1016/j.jclepro.2018.08.065
- Bilim, C., Atis, C.D., Tanyildizi, H. and Karahan, O. (2009), "Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Softw., 40(5), 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
- Bingol, A.F. and Tohumcu, I. (2013), "Effects of different curing regimes on the compressive strength properties of selfcompacting concrete incorporating fly ash and silica fume", Mater. Des., 51, 12-18. https://doi.org/10.1016/j.matdes.2013.03.106
- Boga, A.R., Ozturk, M. and Topcu, I.B. (2013), "Using ANN and ANFIS to predict the mechanical and chloride permeability properties of concrete containing GGBFS and CNI", Compos. Part B. Eng., 45(1), 688-696. https://doi.org/10.1016/j.compositesb.2012.05.054
- Bouzoubaa, N. and Lachemi, M. (2001), "Self Compacting Concrete Incorporating High-Volumes of Class F Fly Ash : Preliminary Results", Cement Concrete Res., 31(3), 413-420. https://doi.org/10.1016/S0008-8846(00)00504-4
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180(20), 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201
- Bui, V.K., Akkaya, Y. and Shah, S.P. (2002), "Rheological model for self-consolidating concrete", ACI. Mater. J., 99(6), 549-559.
- Castelli, M., Vanneschi, L. and Silva, S. (2013), "Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators", Exp. Syst. Appl., 40(17), 6856-6862. https://doi.org/10.1016/j.eswa.2013.06.037
- Chabib, H. El and Syed, A. (2012), "Properties of selfconsolidating concrete made with high volumes of supplementary cementitious materials", J. Mater. Civil Eng., 25(11), 1579-1586.
- Cheng, M.Y., Chou, J.S., Roy, A.F.V. and Wu, Y.W. (2012), "Highperformance concrete compressive strength prediction using time-weighted evolutionary fuzzy support vector machines inference model", Autom. Constr., 28, 106-115. https://doi.org/10.1016/j.autcon.2012.07.004
- Cheng, M.Y., Firdausi, P.M. and Prayogo, D. (2014), "Highperformance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)", Eng. Appl. Artif. Intell., 29, 104-113. https://doi.org/10.1016/j.engappai.2013.11.014
- Chou, J.S. and Pham, A.D. (2013), "Enhanced artificial intelligence for ensemble approach to predicting high performance concrete compressive strength", Constr. Build. Mater., 49, 554-563. https://doi.org/10.1016/j.conbuildmat.2013.08.078
- da Silva, P.R. and de Brito, J. (2015), "Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler", Constr. Build. Mater., 86, 101-112. https://doi.org/10.1016/j.conbuildmat.2015.03.110
- El-Dieb, A.S. and Reda Taha, M.M. (2012), "Flow characteristics and acceptance criteria of fiber-reinforced self-compacted concrete (FR-SCC)", Constr. Build. Mater., 27(1), 585-596. https://doi.org/10.1016/j.conbuildmat.2011.07.004
- Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013), "An evolutionary approach for modeling of shear strength of RC deep beams", Mater. Struct., 46(12), 2109-2119. https://doi.org/10.1617/s11527-013-0039-z
- Gesoglu, M. and Ozbay, E. (2007), "Effects of mineral admixtures on fresh and hardened properties of self-compacting concretes: binary, ternary and quaternary systems", Mater. Struct., 40(9), 923-937. https://doi.org/10.1617/s11527-007-9242-0
- Ghezal, A. and Khayat, K.H. (2002), "Optimizing selfconsolidating concrete with limestone filler by using statistical factorial design methods", ACI. Mater. J., 99(3), 264-272.
- Gilan, S.S., Jovein, H.B. and Ramezanianpour, A.A. (2012), "Hybrid support vector regression-Particle swarm optimization for prediction of compressive strength and RCPT of concretes containing metakaolin", Constr. Build. Mater., 34, 321-329. https://doi.org/10.1016/j.conbuildmat.2012.02.038
- Golafshani, E.M. and Ashour, A. (2016a), "A feasibility study of BBP for predicting shear capacity of FRP reinforced concrete beams without stirrups", Adv. Eng. Softw., 97, 29-39. https://doi.org/10.1016/j.advengsoft.2016.02.007
- Golafshani, E.M. and Ashour, A. (2016b), "Prediction of selfcompacting concrete elastic modulus using two symbolic regression techniques", Autom. Constr., 64, 7-19. https://doi.org/10.1016/j.autcon.2015.12.026
- Golafshani, E.M., Rahai, A. and Sebt, M.H. (2014), "Bond behavior of steel and GFRP bars in self-compacting concrete", Constr. Build. Mater., 61, 230-240. https://doi.org/10.1016/j.conbuildmat.2014.02.021
- Guneyisi, E., Gesoglu, M., Al-Goody, A. and Ipek, S. (2015), "Fresh and rheological behavior of nano-silica and fly ash blended self-compacting concrete", Constr. Build. Mater., 95, 29-44. https://doi.org/10.1016/j.conbuildmat.2015.07.142
- Guneyisi, E., Gesolu, M. and Ozbay, E. (201), "Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures", Constr. Build. Mater., 24(10), 1878-1887. https://doi.org/10.1016/j.conbuildmat.2010.04.015
- Guo, W., Wang, L. and Wu, Q. (2014), "An analysis of the migration rates for biogeography-based optimization", Inform. Sci., 254, 111-140. https://doi.org/10.1016/j.ins.2013.07.018
- Guo, W., Wang, L. and Wu, Q. (2016), "Numerical comparisons of migration models for Multi-objective Biogeography-Based Optimization", Inf. Sci., 328, 302-320. https://doi.org/10.1016/j.ins.2015.07.059
- Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the marquardt algorithm", IEEE Tran. Neural Netw., 5(6), 989-993. https://doi.org/10.1109/72.329697
- Hartigan, J.A. and Wong, M.A. (1979), "Algorithm AS 136: A Kmeans clustering algorithm", Appl. Stat., 28(1), 100-108. https://doi.org/10.2307/2346830
- Ivakhnenko, A.G. (1971), "Polynomial Theory of Complex Systems", IEEE Tran. Syst. Man. Cybern., SMC-1(4), 364-378. https://doi.org/10.1109/TSMC.1971.4308320
- Khan, M.I. (2012), "Predicting properties of High Performance Concrete containing composite cementitious materials using Artificial Neural Networks", Autom. Constr., 22, 516-524. https://doi.org/10.1016/j.autcon.2011.11.011
- Khatib, J.M. (2008), "Performance of self-compacting concrete containing fly ash", Constr. Build. Mater., 22(9), 1963-1971. https://doi.org/10.1016/j.conbuildmat.2007.07.011
- Krishnasamy, U. and Nanjundappan, D. (2016), "Hybrid weighted probabilistic neural network and biogeography based optimization for dynamic economic dispatch of integrated multiple-fuel and wind power plants", Int. J. Electr. Power. Energy Syst., 77, 385-394. https://doi.org/10.1016/j.ijepes.2015.11.022
- Le, H.T. and Ludwig, H.M. (2016), "Effect of rice husk ash and other mineral admixtures on properties of self-compacting high performance concrete", Mater. Des., 89, 156-166. https://doi.org/10.1016/j.matdes.2015.09.120
- Leung, H.Y., Kim, J., Nadeem, A., Jaganathan, J. and Anwar, M.P. (2016), "Sorptivity of self-compacting concrete containing fly ash and silica fume", Constr. Build. Mater., 113, 369-375. https://doi.org/10.1016/j.conbuildmat.2016.03.071
- Liu, M. (2010), "Self-compacting concrete with different levels of pulverized fuel ash", Constr. Build. Mater., 24(7), 1245-1252. https://doi.org/10.1016/j.conbuildmat.2009.12.012
- Ma, H., Simon, D., Fei, M. and Xie, Z. (2013), "Variations of biogeography-based optimization and Markov analysis", Inform. Sci., 220, 492-506. https://doi.org/10.1016/j.ins.2012.07.007
- Mantas, C.J. and Puche, J.M. (2008), "Artificial neural networks are zero-order TSK fuzzy systems", IEEE Tran. Fuzzy Syst., 16(3), 630-643. https://doi.org/10.1109/TFUZZ.2007.902016
- Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034
- Melo, K.A. and Carneiro, A.M.P. (2010), "Effect of Metakaolin‟s finesses and content in self-consolidating concrete", Constr. Build. Mater., 24(8), 1529-1535. https://doi.org/10.1016/j.conbuildmat.2010.02.002
- Mitra, S. and Basak, J. (2001), "FRBF: A fuzzy radial basis function network", Neur. Comput. Appl., 10(3), 244-252. https://doi.org/10.1007/s521-001-8052-9
- Mohamed, H.A. (2011), "Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions", Ain Shams Eng. J., 2(2), 79-86. https://doi.org/10.1016/j.asej.2011.06.001
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014
- Oh, S.K., Kim, W.D., Pedrycz, W. and Seo, K. (2014), "Fuzzy radial basis function neural networks with information granulation and its parallel genetic optimization", Fuzzy Set. Syst., 237, 96-117. https://doi.org/10.1016/j.fss.2013.08.011
- Ozawa, K., Maekawa, K. and Okamura, H. (1990), "High performance concrete with high filling ability", Proceedings of the RILEM Symposium, Admixtures for Concrete, Barcelona.
- Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming", Constr. Build. Mater., 22(8), 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021
- Ozcan, F., Atis, C.D., Karahan, O., Uncuoglu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005
- Oztas, A., Pala, M., Ozbay, E., Kanca, E., Caglar, N. and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-755. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Pala, M., Ozbay, E., Oztas, A. and Yuce, M.I. (2007), "Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks", Constr. Build. Mater., 21(2), 384-394. https://doi.org/10.1016/j.conbuildmat.2005.08.009
- Patel, R., Hossain, K.M.A., Shehata, M., Bouzoubaâ, N. and Lachemi, M. (2004), "Development of statistical models for mixture design of high-volume fly ash self-consolidating concrete", ACI. Mater. J., 101(4), 294-302.
- Pathak, N. and Siddique, R. (2012), "Properties of selfcompacting-concrete containing fly ash subjected to elevated temperatures", Constr. Build. Mater., 30, 274-280. https://doi.org/10.1016/j.conbuildmat.2011.11.010
- Pedrycz, W., Succi, G., Sillitti, A. and Iljazi, J. (2015), "Data description: A general framework of information granules", Knowledge-Based Syst., 80, 98-108.
- Peizhuang, W. (1983), "Pattern recognition with fuzzy objective function algorithms (James C. Bezdek)", SIAM Rev., 25(3), 442-442.
- Persson, B. (2001), "A comparison between mechanical propelties of self-compacting concrete and the corresponding properties of normal concrete", Cement Concrete Res., 31(2), 193-198. https://doi.org/10.1016/S0008-8846(00)00497-X
- Pham, A.D., Hoang, N.D. and Nguyen, Q.T. (2016), "Predicting compressive strength of high-performance concrete using Metaheuristic-Optimized least squares support vector regression", J. Comput. Civil Eng., 30(3), 1-4.
- Phan, T.H., Chaouche, M. and Moranville, M. (2006), "Influence of organic admixtures on the rheological behaviour of cement pastes", Cement Concrete Res., 36(10), 1807-1813. https://doi.org/10.1016/j.cemconres.2006.05.028
- Pofale, A.D. and Deo, S.V. (2010), "Comparative long term study of concrete mix design procedure for fine aggregate replacement with fly ash by minimum voids method and maximum density method", KSCE. J. Civil Eng., 14(5), 759-764. https://doi.org/10.1007/s12205-010-0911-0
- Rebouh, R., Boukhatem, B., Ghrici, M. and Tagnit-Hamou, A. (2017), "A practical hybrid NNGA system for predicting the compressive strength of concrete containing natural pozzolan using an evolutionary structure", Constr. Build. Mater., 149, 778-789. https://doi.org/10.1016/j.conbuildmat.2017.05.165
- Roh, S.B., Oh, S.K. and Pedrycz, W. (2011), "Design of fuzzy radial basis function-based polynomial neural networks", Fuzzy Set. Syst., 185(1), 15-37. https://doi.org/10.1016/j.fss.2011.06.014
- Saha, P., Prasad, M.L.V. and RathishKumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete., 20(1), 31-38.
- Sahmaran, M., Christianto, H.A. and Yaman, I.O. (2006), "The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars", Cement Concrete Compos., 28(5), 432-440. https://doi.org/10.1016/j.cemconcomp.2005.12.003
- Sahmaran, M., Lachemi, M., Erdem, T.K. and Yucel, H.E. (2011), "Use of spent foundry sand and fly ash for the development of green self-consolidating concrete", Mater. Struct., 44(7), 1193-1204. https://doi.org/10.1617/s11527-010-9692-7
- Sanchez, L., Couso, I. and Casillas, J. (2009), "Genetic learning of fuzzy rules based on low quality data", Fuzzy Set. Syst., 160(17), 2524-2552. https://doi.org/10.1016/j.fss.2009.03.004
- Sandhir, R.P., Muhuri, S. and Nayak, T.K. (2012), "Dynamic fuzzy c-means (dFCM) clustering and its application to calorimetric data reconstruction in high-energy physics", Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., DOI: 10.1016/j.nima.2012.04.023.
- Saridemir, M. (2009a), "Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic", Adv. Eng. Softw., 40(9), 920-927. https://doi.org/10.1016/j.advengsoft.2008.12.008
- Saridemir, M. (2009b), "Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks", Adv. Eng. Softw., 40(5), 350-355. https://doi.org/10.1016/j.advengsoft.2008.05.002
- Saridemir, M. (2014), "Effect of specimen size and shape on compressive strength of concrete containing fly ash: Application of genetic programming for design", Mater. Des., 56, 297-304. https://doi.org/10.1016/j.matdes.2013.10.073
- Saridemir, M., Topcu, I.B., Ozcan, F. and Severcan, M.H. (2009), "Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic", Constr. Build. Mater., 23(3), 1279-1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
-
Shaikh, F.U.A. and Supit, S.W.M. (2014), "Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate
$(CaCO_3)$ nanoparticles", Constr. Build. Mater., 70, 309-321. https://doi.org/10.1016/j.conbuildmat.2014.07.099 - Shaikh, F.U.A. and Supit, S.W.M. (2015), "Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA)", Constr. Build. Mater., 82, 192-205. https://doi.org/10.1016/j.conbuildmat.2015.02.068
- Siad, H., Mesbah, H.A., Mouli, M., Escadeillas, G. and Khelafi, H. (2014), "Influence of mineral admixtures on the permeation properties of self-compacting concrete at different ages", Arab. J. Sci. Eng., 39(5), 3641-3649. https://doi.org/10.1007/s13369-014-1055-1
- Siddique, R. (2011), "Properties of self-compacting concrete containing class F fly ash", Mater Des., 32(3), 1501-1507. https://doi.org/10.1016/j.matdes.2010.08.043
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Softw., 42(10), 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016
- Siddique, R., Aggarwal, P. and Aggarwal, Y. (2012), "Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash", Constr. Build. Mater., 29, 73-81. https://doi.org/10.1016/j.conbuildmat.2011.10.035
- Simon, D. (2008), "Biogeography-Based Optimization", IEEE Tran. Evol. Comput., 12(6), 702-713. https://doi.org/10.1109/TEVC.2008.919004
- Slonski, M. (2010), "A comparison of model selection methods for compressive strength prediction of high-performance concrete using neural networks", Comput. Struct., 88(21-22), 1248-1253. https://doi.org/10.1016/j.compstruc.2010.07.003
- Sonebi, M. (2004), "Medium strength self-compacting concrete containing fly ash: Modelling using factorial experimental plans", Cement Concrete Res., 34(7), 1199-1208. https://doi.org/10.1016/j.cemconres.2003.12.022
- Sonebi, M. and Cevik, A. (2009a), "Genetic programming based formulation for fresh and hardened properties of selfcompacting concrete containing pulverised fuel ash", Constr. Build. Mater., 23(7), 2614-2622. https://doi.org/10.1016/j.conbuildmat.2009.02.012
- Sonebi, M. and Cevik, A. (2009b), "Prediction of fresh and hardened properties of self-consolidating concrete using neurofuzzy approach", J. Mater. Civil Eng., 21(11), 672-679. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(672)
- Sukumar, B., Nagamani, K. and Srinivasa Raghavan, R. (2008), "Evaluation of strength at early ages of self-compacting concrete with high volume fly ash", Constr. Build. Mater., 22(7), 1394-1401. https://doi.org/10.1016/j.conbuildmat.2007.04.005
- Tayfur, G., Erdem, T.K. and Onder, K. (2014), "Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks", J. Mater. Civil Eng., 26(11), 04014079. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000985
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009
- Ulucan, Z.C., Turk, K. and Karatas, M. (2008), "Effect of mineral admixtures on the correlation between ultrasonic velocity and compressive strength for self-compacting concrete", Russ. J. Nondestruct. Test., 44(5), 367-374. https://doi.org/10.1134/S1061830908050100
- Utilisation, F. (2008), 2nd Annual International Summit, New Dehli, India.
- Uysal, M. and Sumer, M. (2011), "Performance of self-compacting concrete containing different mineral admixtures", Constr. Build. Mater., 25(11), 4112-4120. https://doi.org/10.1016/j.conbuildmat.2011.04.032
- Uysal, M. and Tanyildizi, H. (2011), "Predicting the core compressive strength of self-compacting concrete (SCC) mixtures with mineral additives using artificial neural network", Constr. Build. Mater., 25(11), 4105-4111. https://doi.org/10.1016/j.conbuildmat.2010.11.108
- Uysal, M. and Tanyildizi, H. (2012), "Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network", Constr. Build. Mater., 27(1), 404-414. https://doi.org/10.1016/j.conbuildmat.2011.07.028
- Valipour, M., Pargar, F., Shekarchi, M. and Khani, S. (2013), "Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study", Constr. Build. Mater., 41, 879-888. https://doi.org/10.1016/j.conbuildmat.2012.11.054
- Yang, Y.K., Sun, T.Y., Huo, C.L., Yu, Y.H., Liu, C.C. and Tsai, C.H. (2013), "A novel self-constructing Radial Basis Function Neural-Fuzzy System", Appl. Soft Comput. J., 13(5), 2390-2404. https://doi.org/10.1016/j.asoc.2013.01.023
- Yu, J. and Duan, H. (2013), "Artificial Bee Colony approach to information granulation-based fuzzy radial basis function neural networks for image fusion", Opt. Int. J. Light Electron. Opt., 127(17), 3103-3111.
- Zhao, H., Sun, W., Wu, X. and Gao, B. (2015), "The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures", J. Clean. Prod., 95, 66-74. https://doi.org/10.1016/j.jclepro.2015.02.050
- Zheng, Y.J., Ling, H.F. and Xue, J.Y. (2014), "Ecogeographybased optimization: Enhancing biogeography-based optimization with ecogeographic barriers and differentiations", Comput. Oper. Res., 50, 115-127. https://doi.org/10.1016/j.cor.2014.04.013
- Zhu, W. and Bartos, P.J.M. (2003), "Permeation properties of selfcompacting concrete", Cement Concrete Res., 33(6), 921-926. https://doi.org/10.1016/S0008-8846(02)01090-6
- Zhu, W., Gibbs, J.C. and Bartos, P.J.M. (2001), "Uniformity of in situ properties of self-compacting concrete in full-scale structural elements", Cement Concrete Compos., 23(1), 57-64. https://doi.org/10.1016/S0958-9465(00)00053-6
Cited by
- Prediction of concrete spall damage under blast: Neural approach with synthetic data vol.26, pp.6, 2018, https://doi.org/10.12989/cac.2020.26.6.533