참고문헌
- Almuwbber, O., Haldenwang, R., Mbasha, W. and Masalova, I. (2018), "The influence of variation in cement characteristics on workability and strength of SCC with fly ash and slag additions", Constr. Build. Mater., 160, 258-267. https://doi.org/10.1016/j.conbuildmat.2017.11.039
- ASTM International (1999), ASTM C 494-99. Standard Specification for Chemical Admixtures for Concrete, ASTM International, West Conshohocken, 4.
- ASTM International (2005), ASTM C39/C39M-05. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken.
- ASTM International (2012), ASTM C618-12. Standard Specification for Coal Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken.
- ASTM International (2013), ASTM C642-13. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken.
- ASTM International (2017), ASTM C1202-17a, Standard Test Method for Electrical Indication of Concrete‟s Ability to Resist Chloride Ion Penetration, ASTM International, West Conshohocken.
- Atis, C.D. and Bilim, C. (2007), "Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag", Build. Environ., 42(8), 3060-3065. https://doi.org/10.1016/j.buildenv.2006.07.027
- Australian Standard (2000), AS 1478.1-2000. Chemical Admixtures for Concrete, Mortar and Grout Admixtures for Concrete, Standards Australia, Sydeny.
- Badogiannis, E., Kakali, G., Dimopoulou, G., Chaniotakis, E. and Tsivilis, S. (2005), "Metakaolin as a main cement constituent. Exploitation of poor Greek kaolins", Cement Concrete Compos., 27(2), 197-203. https://doi.org/10.1016/j.cemconcomp.2004.02.007
- Behim, M., Beddar, M. and Clastres, P. (2013), "Reactivity of granulated blast furnace slag", Slovak J. Civil Eng., 21(2), 7-14. https://doi.org/10.2478/sjce-2013-0007
- Benaicha, M., Roguiez, X., Jalbaud, O., Burtschell, Y. and Alaoui, A.H. (2015), "Influence of silica fume and viscosity modifying agent on the mechanical and rheological behavior of self compacting concrete", Constr. Build. Mater., 84, 103-110. https://doi.org/10.1016/j.conbuildmat.2015.03.061
- Bingol, A.F. and Tohumcu, I. (2013), "Effects of different curing regimes on the compressive strength properties of self compacting concrete incorporating fly ash and silica fume", Mater. Des., 51, 12-18. https://doi.org/10.1016/j.matdes.2013.03.106
- Binici, H. and Aksogan, O. (2006), "Sulfate resistance of plain and blended cement", Cement Concrete Compos.s, 28(1), 39-46. https://doi.org/10.1016/j.cemconcomp.2005.08.002
- Binici, H., Temiz, H. and Kose, M.M. (2007), "The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice", Constr. Build. Mater., 21(5), 1122-1128. https://doi.org/10.1016/j.conbuildmat.2005.11.005
- Bouzoubaa, N. and Lachemi, M. (2001), "Self-compacting concrete incorporating high volumes of class F fly ash: Preliminary results", Cement Concrete Res., 31(3), 413-420. https://doi.org/10.1016/S0008-8846(00)00504-4
- Chen, X. and Wu, S. (2013), "Influence of water-to-cement ratio and curing period on pore structure of cement mortar", Constr. Build. Mater., 38, 804-812. https://doi.org/10.1016/j.conbuildmat.2012.09.058
- Chen, Y.Y., Tuan, B.L.A. and Hwang, C.L. (2013), "Effect of paste amount on the properties of self-consolidating concrete containing fly ash and slag", Constr. Build. Mater., 47, 340-346. https://doi.org/10.1016/j.conbuildmat.2013.05.050
- Da Silva, P. and De Brito, J. (2015), "Experimental study of the porosity and microstructure of self-compacting concrete (SCC) with binary and ternary mixes of fly ash and limestone filler", Constr. Build. Mater., 86, 101-112. https://doi.org/10.1016/j.conbuildmat.2015.03.110
- Dadsetan, S. and Bai, J. (2017), "Mechanical and microstructural properties of self-compacting concrete blended with metakaolin, ground granulated blast-furnace slag and fly ash", Constr. Build. Mater., 146, 658-667. https://doi.org/10.1016/j.conbuildmat.2017.04.158
- Dave, N., Misra, A.K., Srivastava, A. and Kaushik, S. (2017), "Setting time and standard consistency of quaternary binders: The influence of cementitious material addition and mixing", Int. J. Sustain. Built Environ., 6(1), 30-36. https://doi.org/10.1016/j.ijsbe.2016.10.004
- Deilami, S., Aslani, F. and Elchalakani, M. (2017), "Durability assessment of self-compacting concrete with fly ash", Comput. Concrete, 19(5), 489-499. https://doi.org/10.12989/cac.2017.19.5.489
- El-Chabib, H. and Syed, A. (2012), "Properties of selfconsolidating concrete made with high volumes of supplementary cementitious materials", J. Mater. Civil Eng., 25(11), 1579-1586.
- Elchalakani, M., Aly, T. and Abu-Aisheh, E. (2014), "Sustainable concrete with high volume GGBFS to build Masdar City in the UAE", Case Stud. Constr. Mater., 1, 10-24. https://doi.org/10.1016/j.cscm.2013.11.001
- Elchalakani, M., Basarir, H. and Karrech, A. (2016), "Green concrete with high-volume fly ash and slag with recycled aggregate and recycled water to build future sustainable cities", J. Mater. Civil Eng., 29(2), 04016219.
- EN (1983), BS EN 1881-101, Testing Concrete. Method of Sampling Fresh Concrete on Site, British Standards Institution, London, United Kingdom.
- EN (2001), BS EN 934-2: Admixtures for Concrete, Mortar and Grout. Concrete Admixtures. Definitions, Requirements, Conformity, Marking and Labelling, British Standards Institution, London, United Kingdom.
- EN (2010), BS EN 12350-1, Testing Fresh Concrete. Self-Compacting Concrete. u- Box Test, British Standards Institution, London, United Kingdom.
- EN (2010), BS EN 12350-8,Testing Fresh Concrete. Self-Compacting Concrete. Slump-flow Test, British Standards Institution, London, United Kingdom.
- EN (2010), BS EN 12350-9, Testing Fresh Concrete. Self-Compacting Concrete. V-Funnel Test, British Standards Institution, London, United Kingdom.
- EN (2010), BS EN 12350-10, Testing Fresh Concrete. Self-Compacting Concrete. L Box Test, British Standards Institution, London, United Kingdom.
- Farhang, K. and Fathi, H. (2017), "Performance of concrete structures with a combination of normal SCC and fiber SCC", Comput. Concrete, 20(6), 655-661. https://doi.org/10.12989/CAC.2017.20.6.655
- Fathi, H. and Lameie, T. (2017), "Effect of aggregate type on heated self-compacting concrete", Comput. Concrete, 19(1), 33-39. https://doi.org/10.12989/cac.2017.19.1.033
- Gao, Y., De Schutter, G., Ye, G., Tan, Z. and Wu, K. (2014), "The ITZ microstructure, thickness and porosity in blended cementitious composite: Effects of curing age, water to binder ratio and aggregate content", Compos. Part B: Eng., 60, 1-13.
- Gesoglu, M., Guneyisi, E. and O zbay, E. (2009), "Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume", Constr. Build. Mater., 23(5), 1847-1854. https://doi.org/10.1016/j.conbuildmat.2008.09.015
- Ghafari, E., Costa, H., Julio, E., Portugal, A. and Duraes, L. (2014), "The effect of nanosilica addition on flowability, strength and transport properties of ultra high performance concrete", Mater. Des., 59, 1-9. https://doi.org/10.1016/j.matdes.2014.02.051
- Hassan, A.A., Lachemi, M. and Hossain, K.M. (2012), "Effect of metakaolin and silica fume on the durability of selfconsolidating concrete", Cement Concrete Compos., 34(6), 801-807. https://doi.org/10.1016/j.cemconcomp.2012.02.013
- Jalal, M., Pouladkhan, A., Harandi, O.F. and Jafari, D. (2015), "Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete", Constr. Build. Mater., 94, 90-104. https://doi.org/10.1016/j.conbuildmat.2015.07.001
- Jawahar, J.G., Sashidhar, C., Reddy, I.R. and Peter, J.A. (2013), "Design of cost-effective M 25 grade of self compacting concrete", Mater. Des., 49, 687-692. https://doi.org/10.1016/j.matdes.2013.01.078
- Jawahar, J.G., Sashidhar, C., Reddy, I.R. and Peter, J.A. (2013), "Micro and macrolevel properties of fly ash blended self compacting concrete", Mater. Des., 46, 696-705. https://doi.org/10.1016/j.matdes.2012.11.027
- Kadri, E.H. and Duval, R. (2009), "Hydration heat kinetics of concrete with silica fume", Constr. Build. Mater., 23(11), 3388-3392. https://doi.org/10.1016/j.conbuildmat.2009.06.008
- Khan, A., Do, J. and Kim, D. (2016), "Cost effective optimal mix proportioning of high strength self compacting concrete using response surface methodology", Comput. Concrete, 17(5), 629-638. https://doi.org/10.12989/cac.2016.17.5.629
- Khan, M.I. and Siddique, R. (2011), "Utilization of silica fume in concrete: Review of durability properties", Resour. Conserv. Recycl., 57, 30-35. https://doi.org/10.1016/j.resconrec.2011.09.016
- Le, H.T. and Ludwig, H.M. (2016), "Effect of rice husk ash and other mineral admixtures on properties of self-compacting high performance concrete", Mater. Des., 89, 156-166. https://doi.org/10.1016/j.matdes.2015.09.120
- Lian, C., Zhuge, Y. and Beecham, S. (2011), "The relationship between porosity and strength for porous concrete", Constr. Build. Mater., 25(11), 4294-4298. https://doi.org/10.1016/j.conbuildmat.2011.05.005
- Liu, M. (2010), "Self-compacting concrete with different levels of pulverized fuel ash", Constr. Build. Mater., 24(7), 1245-1252. https://doi.org/10.1016/j.conbuildmat.2009.12.012
- Long, G., Gao, Y. and Xie, Y. (2015), "Designing more sustainable and greener self-compacting concrete", Constr. Build. Mater., 84, 301-306. https://doi.org/10.1016/j.conbuildmat.2015.02.072
- Nikbin, I., Beygi, M., Kazemi, M., Amiri, J.V., Rabbanifar, S., Rahmani, E. and Rahimi, S. (2014), "A comprehensive investigation into the effect of water to cement ratio and powder content on mechanical properties of self-compacting concrete", Constr. Build. Mater., 57, 69-80. https://doi.org/10.1016/j.conbuildmat.2014.01.098
- Ponikiewski, T. and Golaszewski, J. (2014), "The influence of high-calcium fly ash on the properties of fresh and hardened self-compacting concrete and high performance self-compacting concrete", J. Clean. Prod., 72, 212-221. https://doi.org/10.1016/j.jclepro.2014.02.058
- Rama, K.J., Sivakumar, M., Vasan, A., Kubair, S. and Murthy, R.A. (2017), "Plastic viscosity based mix design of selfcompacting concrete with crushed rock fines", Comput. Concrete, 20(4), 461-468.
- Sabet, F.A., Libre, N.A. and Shekarchi, M. (2013), "Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash", Constr. Build. Mater., 44, 175-184. https://doi.org/10.1016/j.conbuildmat.2013.02.069
- Scrivener, K.L., Crumbie, A.K. and Laugesen, P. (2004), "The interfacial transition zone (ITZ) between cement paste and aggregate in concrete", Interf. Sci., 12(4), 411-421. https://doi.org/10.1023/B:INTS.0000042339.92990.4c
- Sethy, K.P., Pasla, D. and Sahoo, U.C. (2016), "Utilization of high volume of industrial slag in self compacting concrete", J. Clean. Prod., 112, 581-587. https://doi.org/10.1016/j.jclepro.2015.08.039
- Struble, L. and Tebaldi, G. (2017), "Materials for sustainable infrastructure", Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt.
- Turk, K., Karatas, M. and Gonen, T. (2013), "Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of SCC", KSCE J. Civil Eng., 17(1), 202-209. https://doi.org/10.1007/s12205-013-1680-3
- Uysal, M. and Sumer, M. (2011), "Performance of self-compacting concrete containing different mineral admixtures", Constr. Build. Mater., 25(11), 4112-4120. https://doi.org/10.1016/j.conbuildmat.2011.04.032
- Vakhshouri, B. and Nejadi, S. (2017), "Compressive strength and mixture proportions of self-compacting light weight concrete", Comput. Concrete, 19(5), 555-566. https://doi.org/10.12989/cac.2017.19.5.555
- Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A. and Chaipanich, A. (2014), "Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume", Mater. Des., 64, 261-269. https://doi.org/10.1016/j.matdes.2014.07.042
- Xie, T. and Ozbakkaloglu, T. (2016), "Behavior of recycled aggregate concrete-filled basalt and carbon FRP tubes", Constr. Build. Mater., 105, 132-143. https://doi.org/10.1016/j.conbuildmat.2015.12.068
- Xie, T. and Visintin, P. (2018), "A unified approach for mix design of concrete containing supplementary cementitious materials based on reactivity Moduli", J. Clean Prod., 203, 68-82. https://doi.org/10.1016/j.jclepro.2018.08.254
- Yazici, H. (2008), "The effect of silica fume and high-volume Class C fly ash on mechanical properties, chloride penetration and freeze-thaw resistance of self-compacting concrete", Constr. Build. Mater., 22(4), 456-462. https://doi.org/10.1016/j.conbuildmat.2007.01.002
- Yudenfreund, M., Odler, I. and Brunauer, S. (1972), "Hardened portland cement pastes of low porosity I. Materials and experimental methods", Cement Concrete Res., 2(3), 313-330. https://doi.org/10.1016/0008-8846(72)90073-7
- Zhang, M., Tam, C. and Leow, M. (2003), "Effect of water-tocementitious materials ratio and silica fume on the autogenous shrinkage of concrete", Cement Concrete Res., 33(10), 1687-1694. https://doi.org/10.1016/S0008-8846(03)00149-2
- Zhao, H., Sun, W., Wu, X. and Gao, B. (2015), "The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures", J. Clean. Prod., 95, 66-74. https://doi.org/10.1016/j.jclepro.2015.02.050