DOI QR코드

DOI QR Code

SWAT과 STARDEX를 이용한 극한 기후변화 사상에 따른 금강유역의 수문 및 유황분석

Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum river basin using SWAT and STARDEX

  • 김용원 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 이지완 (건국대학교 공과대학 사회환경플랜트공학과) ;
  • 김성준 (건국대학교 공과대학 사회환경플랜트공학과)
  • Kim, Yong Won (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Lee, Ji Wan (Department of Civil, Environmental and Plant Engineering, Konkuk University) ;
  • Kim, Seong Joon (Department of Civil, Environmental and Plant Engineering, Konkuk University)
  • 투고 : 2018.07.31
  • 심사 : 2018.09.07
  • 발행 : 2018.10.31

초록

본 연구의 목적은 금강유역($9,645.5km^2$)을 대상으로 극한 기후변화 사상에 따른 수문 및 유황의 변동을 평가하는 것이다. 본 연구에서는 객관적인 극한 기후변화 사상을 평가하기 위해 강우관련 극한지수(STARDEX)를 적용하고, GCM 10개의 RCP 8.5 기후변화 시나리오에 대해 4개의 평가기간별(Historical: 1975~2005, 2020s: 2011~2040, 2050s: 2041~2070, 2080s: 2071~2100)로 분석하였다. 분석 결과 5개의 습윤(CESM1-BGC, HadGEM2-ES), 중간(MPI-ESM-MR) 건조(INM-CM4, FGOALS-s2) 극한 기후변화 사상 시나리오를 선정하여 SWAT 모형에 적용하였다. 2080s 기간에서 중간시나리오 대비 2080s의 증발산은 -3.2~+3.1 mm로 변화하였고, 2080s의 총 유출량은 $+5.5{\sim}+128.4m^3/s$ 변화하였다. 건조한 시나리오의 경우 2020s 중간시나리오대비 큰 변화를 보였다. 건조한 시나리오에서의 2020s의 증발산량은 -16.8~-13.3 mm의 변화를 보였고, 총 유출량은 $-264.0{\sim}132.3m^3/s$의 변화를 보였다. 유황 변동의 경우, 2080s 기간의 습윤한 시나리오에서 CFR은 +4.2~+10.5, 2020s 기간의 건조한 시나리오에서는 +1.7~2.6으로 변화 하였다. 극한 기후변화 시나리오를 적용한 금강유역의 수문인자의 변화에 따라 유황분석을 실시한 결과, INM-CM4는 극한 건조상태를 나타내기에 적절한 시나리오로 나타났고 FGOALS-s2는 유황변동이 큰 가뭄 상태 분석에 적절한 시나리오로 나타났다. HadGEM2-ES는 유황변동이 작게 나타났기 때문에 최대유량 분석 시 활용 가능한 시나리오로 평가되었고, CESM1-BGC의 경우 유황변동이 큰 것으로 나타나 극한 홍수 분석 시 적용할 수 있는 시나리오로 평가되었다.

The purpose of this study is to evaluate the climate change impact on watershed hydrology and flow duration in Geum River basin ($9,645.5km^2$) especially by extreme scenarios. The rainfall related extreme index, STARDEX (STAtistical and Regional dynamical Downscaling of EXtremes) was adopted to select the future extreme scenario from the 10 GCMs with RCP 8.5 scenarios by four projection periods (Historical: 1975~2005, 2020s: 2011~2040, 2050s: 2041~2070, 2080s: 2071~2100). As a result, the 5 scenarios of wet (CESM1-BGC and HadGEM2-ES), normal (MPI-ESM-MR), and dry (INM-CM4 and FGOALS-s2) were selected and applied to SWAT (Soil and Water Assessment Tool) hydrological model. The wet scenarios showed big differences comparing with the normal scenario in 2080s period. The 2080s evapotranspiration (ET) of wet scenarios varied from -3.2 to +3.1 mm, the 2080s total runoff (TR) varied from +5.5 to +128.4 mm. The dry scenarios showed big differences comparing with the normal scenario in 2020s period. The 2020s ET for dry scenarios varied from -16.8 to -13.3 mm and the TR varied from -264.0 to -132.3 mm respectively. For the flow duration change, the CFR (coefficient of flow regime, Q10/Q355) was altered from +4.2 to +10.5 for 2080s wet scenarios and from +1.7 to +2.6 for 2020s dry scenarios. As a result of the flow duration analysis according to the change of the hydrological factors of the Geum River basin applying the extreme climate change scenario, INM-CM4 showed suitable scenario to show extreme dry condition and FGOALS-s2 showed suitable scenario for the analysis of the drought condition with large flow duration variability. HadGEM2-ES was evaluated as a scenario that can be used for maximum flow analysis because the flow duration variability was small and CESM1-BGC was evaluated as a scenario that can be applied to the case of extreme flood analysis with large flow duration variability.

키워드

참고문헌

  1. Cho, J. P. (2013). Impact assessment of climate change for agricultural reservoirs considering uncertainty. Research Report, APEC Climate Center, pp. 53-136.
  2. European Union (2005). STARDEX Diagnostic Extremes Indices Software User Information, STARDEX, accessed 23 October 2018, .
  3. Goodess, C. M., Anagnostopoulou, C., Bardossy, A., Frei, C., Harpham, C., Haylock, M. R., Schmith, T., Hundecha, Y., Marheras, P., Ribalaygua, J., Schmidki, J., Schmith, T., Tolika, K., Tomozeiu, R., and Wilby, R. L. (2007). An intercomparison of statistical downscaling methods for Europe and European regions-assessing their performance with respect to extreme temperature and precipitation events. Climatic Change, pp. 1-68.
  4. IPCC (2007). "Climate change 2007: synthesis report." Contribution of working groups 1, 2 and 3 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Edited by Core Writing Team, Parchauri, R. K., and Reisinger, A., IPCC, Geneva, Sweitzerland, p. 102.
  5. Jung, I. W., Lee, B. J., Jun, T. H., and Bae, D. H. (2008). "Hydrological model response to climate change impact assessments on water resources." Journal of Korea Water Resource Association, Vol. 41, No. 9, pp. 907-917. https://doi.org/10.3741/JKWRA.2008.41.9.907
  6. Kang, D. H., Kang, Y. S., Hong, S. J., Sidoeun, L., Jung, Y. H., and Kang, H. S. (2013). "The ETCCDI and frequency analysis using RCP scenarios." Journal of Wetlands Research, Vol. 15, No. 4, pp. 595-607. https://doi.org/10.17663/JWR.2013.15.4.595
  7. Kang, S. K., Lee, D. R., Moon, J. W. and Choi, S. J. (2010). "Effects of dams and water use on flow regime alteration of the Geum river basin." Journal of Korea Water Resource Association, Vol. 43, No. 4, pp. 325-336. https://doi.org/10.3741/JKWRA.2010.43.4.325
  8. Karl, T. R., Mason, E. H., Hughes, P. Y., and Bowman, D. P. (1996). United states historical climatology network (U.S. HCN): Monthly temperature and precipitation Data. ORNL/CDIAC87, NDP-019/R3, Envir. Sciences Div. Pub. No. 4500, Oak ridge National Lab, p. 83.
  9. Katsavounidis, I., Jay Kuo, C.-C., and Zhang, Z. (1994). "A new initialization technique for generalized Lloyd iteration." IEEE Signal Processing Letters, Vol. 1, No. 10, pp. 144-146. https://doi.org/10.1109/97.329844
  10. Kim, B. K., and Kim, B. S. (2009). "Analysis of impact climate change on extreme rainfall using B2 climate change scenario and extreme indice." Journal of Korean Society of Civil Engineers, Vol. B, 29(1B), pp. 23-33.
  11. Kim, B. K., Kim, B. S., and Kim, H. S. (2008). "On the change of extreme weather event using extreme indices." Journal of Korean Society of Civil Engineers, Vol. B, 2B(1B), pp. 41-53.
  12. Lee, J. W., Jung, C. G., Kim, D. R., and Kim, S. J. (2018). "Assessment of future climate change impact on groundwater level behavior in Geum river basin using SWAT." Journal of Korea Water Resource Association, Vol. 51, No. 3, pp. 247-261. https://doi.org/10.3741/JKWRA.2018.51.3.247
  13. Lee, J. W., Kim, H. S., and Yoo, H. S. (1993). "An analysis of the effect of damming on flow duration characteristics of five major rivers in Korea." Journal of Korean Society of Civil Engineers, Vol. 13, No. 3, pp. 79-91.
  14. Lee, S. H., and Heo, I. H. (2011). "The impacts of urbanization on changes of extreme events of air temperature in South Korea." The Korean Geographic Society, Vol. 46, No. 3, pp. 257-276.
  15. Manton, M. J., Della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., and Chambers, L. E. (2001). "Trends in extreme daily rainfall and temperature in Southesast Asia and the South Pacific: 1961-1998." International Journal of Climatology, Vol. 21, pp. 269-284. https://doi.org/10.1002/joc.610
  16. Ministry of Land, Infrastructure and Transport (MOLIT) (2016). Groundwater annual report. Sejong-si, Korea.
  17. Ministry of Land, Korea Meteorological Administration (KMA) (2017). Abnormal climate report. Seoul-si, Korea.
  18. Schmidli, J., and Frei, C. (2003). 20th century trends of extreme precipitation conditions in the Swiss Alps. STARDEX Project, EU, pp. 1-5.
  19. Seo, S. B., Kim, Y. I., and Kim, Y. O. (2017). "Selecting climate change scenarios for hydrologic impact studies for Korea." Proceedings Korean Society of Civil Engineers 2018 Convention, pp. 106-107.