DOI QR코드

DOI QR Code

표준강수지수와 강수 부족량을 이용한 이변량 가뭄빈도해석: 한강유역을 중심으로

Drought assessment by bivariate frequency analysis using standardized precipitation index and precipitation deficit: focused on Han river basin

  • 권민성 (서경대학교 도시안전연구센터) ;
  • 성장현 (환경부 한강홍수통제소) ;
  • 김태웅 (한양대학교 공학대학 건설환경공학과) ;
  • 안재현 (서경대학교 토목건축공학과)
  • Kwon, Minsung (Urban Risk Management Research Center, Seokyeong University) ;
  • Sung, Jang Hyun (Ministry of Environment, Han River Flood Control Office) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University (ERICA)) ;
  • Ahn, Jaehyun (Department of Civil & Architectural Engineering, Seokyeong University)
  • 투고 : 2018.08.08
  • 심사 : 2018.09.04
  • 발행 : 2018.10.31

초록

본 연구에서는 표준강수지수를 이용하여 가뭄사상을 정의하고, 가뭄심도와 부족 강수량을 대상으로 이변량 가뭄빈도해석을 수행하였다. 부족강수량은 표준강수지수의 가뭄기준인 -1에 해당하는 강수량을 기준으로 산정하였다. 지금까지 연구에서 가뭄지수의 심도와 지속기간 이용한 빈도해석을 통한 가뭄의 평가가 주를 이루었다. 하지만 이 두 변량은 선형적인 관계가 매우 높아 각 변량에 대한 단변량 빈도해석과 비교하여 정보의 확장성은 크지 않다. 2015년 가뭄의 경우, 서울, 양평, 충주지점의 '가뭄심도-부족 강수량'량의 재현기간은 모두 300년 이상의 극심한 가뭄을 나타내고 있지만, '가뭄심도-지속기간'에서는 재현기간을 약 10년, 50년, 50년으로 평가하여 큰 차이를 나타냈다. 우기를 포함한 가뭄은 강수량 부족이 심각할지라도 가뭄심도는 가뭄을 상대적으로 낮게 평가할 수 있어 실제 가뭄의 심각성을 나타내는데 한계가 있었다. '가뭄심도-부족 강수량' 빈도해석 결과는 강수량의 절대적인 부족량 정보를 함께 포함하고 있어, 가뭄에 대응하기 위한 지표로 활용성이 높을 것으로 판단된다.

This study evaluated drought severity by bivariate frequency analysis using drought magnitude and precipitation deficit. A drought event was defined by Standardized Precipitation Index (SPI) and the precipitation deficit was estimated using reference precipitation corresponding to the SPI -1. In previous studies, drought magnitude and duration were used for bivariate frequency analysis. However, since these two variables have a largely linear relationship, extensibility of drought information is not great compared to the univariate frequency analysis for each variable. In the case of drought in 2015, return periods of 'drought magnitude-precipitation deficit' in the Seoul, Yangpyeong, and Chungju indicated severe drought over 300 years. However, the result of 'drought magnitude-duration' showed a significant difference by evaluating the return period of about 10, 50, and 50 years. Although a drought including the rainy season was seriously lacking in precipitation, drought magnitude did not adequately represent the severity of the absolute lack of precipitation. This showed that there is a limit to expressing the actual severity of drought. The results of frequency analysis for 'drought magnitude-precipitation deficit' include the absolute deficit of precipitation information, so which could consider being a useful indicator to cope with drought.

키워드

참고문헌

  1. Chen, L., Singh, V. P., Guo, S., Mishra, A. K., and Guo, J. (2013). "Drought analysis using copulas." Journal of Hydrologic Engineering, Vol. 18, No. 7, pp. 797-808. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000697
  2. Kao, S. C., and Govindaraju, R. S. (2010). "A copula-based joint deficit index for droughts." Journal of Hydrology, Vol. 380, No. 1-2, pp. 121-134. https://doi.org/10.1016/j.jhydrol.2009.10.029
  3. Kim, B. S., Chang, I. G., Sung, J. H., and Han, H. J. (2016). "Projection in future drought hazard of South Korea based on RCP climate change scenario 8.5 using SPEI." Advances in Meteorology, 2016. DOI: 10.1155/2016/4148710
  4. Kim, J. Y., Kim, J. G., Cho, Y. H., and Kwon, H. H. (2017). "A development of Bayesian Copula model for a bivariate drought frequency analysis." Journal of Korea Water Resources Association, Vol. 50, No. 11, pp. 745-758. https://doi.org/10.3741/JKWRA.2017.50.11.745
  5. Kwak, J. W., Kim, D. G., Lee, J. S., and Kim, H. S. (2012). "Hydrological drought analysis using copula theory." Journal of The Korean Society of Civil Engineers, Vol. 32, No. 3B, pp. 161-168. https://doi.org/10.12652/KSCE.2012.32.3B.161
  6. Kyoung, M., Lee, Y., Kim, H., and Kim, B. (2009). "Assessment of climate change effect on temperature and drought in Seoul: Based on the AR4 SRES A2 scenario." Journal of the Korean Society of Civil Engineers, Vol. 29, No. 2B, pp. 181-191.
  7. McKee, T. B., Doesken, N. J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." Proceedings of the 8th Conference on Applied Climatology, American Meteorological Society, Boston, MA, pp. 179-183.
  8. Mirabbasi, R., Fakheri-Fard, A., and Dinpashoh, Y. (2012). "Bivariate drought frequency analysis using the copula method." Theoretical and Applied Climatology, Vol. 108, No. 1-2, pp. 191-206. https://doi.org/10.1007/s00704-011-0524-7
  9. Nelssen, R. B. (2006). An introduction to Copula. Springer, New York, pp. 109-115.
  10. Park, B.-S., Lee, J.-H., Kim, C.-J., and Jang, H.-W. (2013). "Projection of future drought of Korea based on probabilistic approach using multi-model and multi climate change scenarios." Journal of the Korean Society of Civil Engineers, Vol. 33 No. 5, pp. 1871-1885. https://doi.org/10.12652/Ksce.2013.33.5.1871
  11. Park, M., Lee, O., Park, Y., and Kim, S. (2015). "Future drought projection in Korea under AR5 RCP climate change scenarios." Journal of Korean Society of Hazard Mitigation, Vol. 15, No. 6, pp. 423-433. https://doi.org/10.9798/KOSHAM.2015.15.6.423
  12. Ryu, J. S., Ahn, J., and Kim, S. (2012). "An application of drought severity-area-duration curves using copulas-based joint drought index." Journal of Korea Water Resources Association, Vol. 45, No. 10, pp. 1043-1050. https://doi.org/10.3741/JKWRA.2012.45.10.1043
  13. Sheffield, J., Wood, E. F., and Roderick, M. L. (2012). "Little change in global drought over the past 60 years." Nature, Vol. 491, No. 7424, pp. 435-438. https://doi.org/10.1038/nature11575
  14. Shiau, J. T., Feng, S., and Nadarajah, S. (2007). "Assessment of hydrological droughts for the Yellow River, China, using copulas." Hydrological Processes: An International Journal, Vol. 21, No. 16, pp. 2157-2163. https://doi.org/10.1002/hyp.6400
  15. Stokes, B., Wike, R., and Carle, J. (2015). Global concern about climate change, broad support for limiting emissions, Pew Research Center, accessed 28 July 2018, .
  16. Wilhite, D. (2006). Drought monitoring and early warning: concepts, progress and future challenges. Geneva: World Meteorological Organization, 1006: 24.
  17. WMO (2009). Experts agree on a universal drought index to cope with climate risks. World Meteorological Organization Press Release No. 872, accessed 17 July 2018, .
  18. Wong, G., Lambert, M. F., and Metcalfe, A. V. (2008). "Trivariate copulas for characterisation of droughts." Anziam Journal, Vol. 49, pp. 306-323.
  19. Yeon, J. M., Byun, S. H., Lee, J. K., and Kim, T. W. (2007). "Evaluation of droughts in Seoul using Two-dimensional drought frequency analysis." Journal of Korea Water Resources Association, Vol. 40, No. 4, pp. 335-343. https://doi.org/10.3741/JKWRA.2007.40.4.335
  20. Yoo, J. Y., Shin, J. Y., Kim, D., and Kim, T.-W. (2013). "Drought risk analysis using stochastic rainfall generation model and copula functions." Journal of Korea Water Resources Association, Vol. 46, No. 4, pp. 425-437. https://doi.org/10.3741/JKWRA.2013.46.4.425
  21. Zhang, L., and Singh, V. P. (2006). "Bivariate flood frequency analysis using the copula method." Journal of Hydrologic Engineering, Vol. 11, No. 2, pp. 150-164. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(150)