DOI QR코드

DOI QR Code

국내 물류기업의 드론배송서비스 도입방안에 관한 연구

Study on measures to introduce Drone Delivery Service for domestic logistics

  • 유현태 (단국대학교 무역학과) ;
  • 유학수 (글로벌사이버대학교 융합경영학과) ;
  • 정윤세 (단국대학교 무역학과)
  • Yoo, Hyun Tae (Division of Trade, Dankook University) ;
  • You, Hak Soo (Division of Convergence Business Administration, Globalcyber University) ;
  • Jeong, Yoon Say (Division of Trade, Dankook University)
  • 투고 : 2018.09.13
  • 심사 : 2018.10.20
  • 발행 : 2018.10.31

초록

본 연구는 국내 도입단계에 있는 드론 물류배송서비스에 있어, 최종 사용자의 수용 태도와 활용의도를 검증 하였다. 본 연구목적을 위해 드론 물류배송서비스의 사례와 문헌연구를 바탕으로 연구모형과 가설을 설정하였고 설문조사를 통해 획득한 데이터를 SPSS 22.0을 활용해 검증하였다. 이에 확장된 기술수용모델(TAM)을 이용하여 새로운 기술 서비스의 영향관계 검증 결과, 드론 물류배송서비스 이용자의 개인 혁신성, 경제성, 편의성은 해당 기술의 수용 태도 및 활용의도에 인과 관계가 있는 것으로 파악되었다. 하지만 지각된 위험은 인과관계가 없는 것으로 확인되었다. 이에 드론 물류배송서비스 최종 사용자들의 수용태도와 활용의도에 관한 연구결과를 토대로 드론 배송서비스 도입 시 고려해야 할 사항 등에 대한 드론배송 서비스 사업화를 위한 마케팅시사점을 제공하였다.

This study is to verify the accommodation attitudes and intention of use of the end-users to use the drone distribution delivery service that is to be introduced in Korea. For a research purpose, the research model and hypothesis in this study have been set based on by using the SPSS 22.0. Upon these, the extended technology acceptance model has been used to verify the correlation service of new technology, and the result has shown that the user of drone distribution delivery service has a causal relationship with individual innovation and that the accommodation behavior and intention of use have a causal relationship with economic efficiency and convenience. However, there was no causal relation from a perceived risk. Hence, based on the results of study about accommodation behaviors and intention of use of the end users of drone distribution delivery service, the marketing implications have been provided for commercialization of drone delivery service.

키워드

참고문헌

  1. S. J. Kim, K. H. Bae & C. Y. Choi. (2016). A Study on Introduction of Drone Delivery Service Policies and Development Plans in Countries. Journal of Korea logistics Research, 26(1), 27-38.
  2. W. G. Lee. (2015). City management using drones. Busan Development Institute, 288, 1-12.
  3. H. Jung & H. G. Lee. (2015). Progress direction Using Drone physical distribution service. Postal Service information. 101, 13-39.
  4. F. D. Davis, R. P. Bagozzi & P. R. Warshaw. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982
  5. M. S. Eastin & R. La Rose. (2000). Internet self-efficacy and the psychology of the digital divide. Journal of Computer-Mediated Communication, 6(1).
  6. P. Luarn & H. H. Lin. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in human behavior, 21(6), 873-891. https://doi.org/10.1016/j.chb.2004.03.003
  7. B. C. hwang. (2016). An Empirical Study on the Factors Influencing the Users' Continuance Intention of Smartphone Payment Services by Types of Services. Doctoral dissertation. KNU University, Daegu.
  8. M. C. Lee (2009). Factors influencing the the adoption of internet banking : An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141. https://doi.org/10.1016/j.elerap.2008.11.006
  9. LU. LIU. (2017). O2O-based mobile travel app characteristics influencing post-purchase behavior via app attractiveness. Doctoral dissertation. Sejong. University, Seoul.
  10. L. L Berry, K. Seiders & D. Grewal. (2002). Understanding service convenience. Journal of Marketing. 66(3), 1-17. https://doi.org/10.1509/jmkg.66.3.1.18505
  11. K. Seiders, G. B. Voss, A. L. Godfrey & D. Grewal. (2007). SERVCON: Development and validation of a multidimensional service convenience scale. Journal of the Academy of Marketing Science. 35(1), 144-156. https://doi.org/10.1007/s11747-006-0001-5
  12. S. R. Colwell, M. Aung, V. Kanetkar & A. L. Holden. (2008). Toward a Measure of Service Convenience: Mulitiple-item Scale Development and Empirical Test. Journal of Service Marketing, 2, 160-169.
  13. L. Jiang, N. Jiang & S. Liu. (2011). Consumer Perceptions of E-Service Convenience: An Exploratory Study. Procedia Environmental Sciences, 11, 406-410. https://doi.org/10.1016/j.proenv.2011.12.065
  14. C. M. Angst & R. Agarwal. (2009). Adoption of electronic health records in the presence of privacy concerns: the elaboration likelihood model and individual persuasion. MIS Quarterly, 33(2), 339-370. https://doi.org/10.2307/20650295
  15. S. Sumaedi, I. G. M. Y. Bakti & M. Yarmen. (2012). The empirical study of public transport passengers' behavioral intentions: the roles of service quality, perceived sacrifice, perceived value, and satisfaction (case study: paratransit passengers in jakarta, indonesia). International Journal for Traffic & Transport Engineering, 2(1), 83-97
  16. V. Venkatesh & M. G. Morris. (2000). Why do not men ever stop to ask for directions? gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 24(1), 115-139. https://doi.org/10.2307/3250981
  17. T. Dinev & P. Hart. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61-80. https://doi.org/10.1287/isre.1060.0080
  18. F. D. Davis. (1989), Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
  19. S. Taylor & P. Todd. (1995). Assessing IT Usage: The Role of Prior Experience. MIS Quarterly, 19, 561-570. https://doi.org/10.2307/249633
  20. V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  21. F. D. Davis. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
  22. M. Fishbein & I. Ajzen. (1975) Belief, Attitude, Intention and Behavior: An Introduction of Theory and Research. Cambridge, MA: Addison-Wesley.
  23. V. Venkatesh & F. D. Davis. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
  24. V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
  25. E. M. Rogers. (2003). Diffusion of innovations, 5th edition. New York. Free Press, 551
  26. D. Gefen, D. Straub & M. C. Boudreau. (2000). Structural equation modeling and regression: Guidelines for research practice. Communications of the association for information systems, 4(1), 7.
  27. J. H. Yang. (2018). A Study on the Effect of Block Chain Application and Legal Issue in Logistics Industry. Journal of Convergence for Information Technology, 8(1), 5. DOI : 10.22156/CS4SMB.2018.8.1.187
  28. M. S. Kim, J. H. Kang & M, S. Jun. A study on the security threat and security requirements for multi unmanned aerial vehicles. Journal of Digital Convergence, 15(8), 6-7. DOI: 10.14400/JDC.2017.15.8.195