DOI QR코드

DOI QR Code

블록 체인 기반의 다중 그룹 요소를 이용한 사용자 프라이버시 관리 모델

User Privacy management model using multiple group factor based on Block chain

  • 정윤수 (목원대학교 정보통신융합공학부) ;
  • 김용태 (한남대학교 멀티미디어학과) ;
  • 박길철 (한남대학교 멀티미디어학과)
  • Jeong, Yoon-Su (Department of information Communication Convergence Engineering, Mokwon University) ;
  • Kim, Yong-Tae (Department of multimedia, Hannam University) ;
  • Park, Gil-Cheol (Department of multimedia, Hannam University)
  • 투고 : 2018.09.12
  • 심사 : 2018.10.20
  • 발행 : 2018.10.31

초록

IT 기술 중 빅 데이터와 인터넷 기술이 급속하게 발달함에 따라 중요 데이터를 USB와 같은 외부 저장장치에 저장하지 않고도 인터넷이 연결되어 있는 곳이면 어디든지 클라우드 환경에 저장된 데이터를 사용할 수 있는 환경으로 바뀌어 가고 있다. 그러나, 클라우드 환경에서 처리되는 데이터가 손쉽게 일반 사용자들이 처리할 수 있는 환경으로 바꿔가면서 사용자의 프라이버시 정보에 대한 보호의 중요성이 점점 증가하고 있다. 본 논문에서는 클라우드 환경에서 사용되는 정보를 제3자에게 노출시키지 않으면서 사용자의 서비스 질을 향상시킬 수 있는 관리 모델을 제안한다. 제안 모델은 다양한 클라우드 환경에서 처리되고 있는 데이터들 중에서 사용자의 프라이버시 정보를 제3자가 악의적으로 처리하지 못하도록 사용자 그룹을 가상의 환경으로 그룹핑한 후 identity 속성과 접근제어 정책을 블록 체인으로 처리한다. 특히, 클라우드 환경에서 처리되는 데이터의 처리 효율성에 대한 성능을 향상시키기 위해서 개인 정보와 계산 집약적인 암호 정책은 오프 체인에서 실행하도록 하였다.

With the rapid development of big data and Internet technologies among IT technologies, it is being changed into an environment where data stored in the cloud environment can be used wherever the Internet is connected, without storing important data in an external storage device such as USB. However, protection of users' privacy information is becoming increasingly important as the data being processed in the cloud environment is changed into an environment that can be easily handled. In this paper, we propose a user-reserving management model that can improve the user 's service quality without exposing the information used in the cloud environment to a third party. In the proposed model, user group is grouped into virtual environment so that third party can not handle user's privacy information among data processed in various cloud environments, and then identity property and access control policy are processed by block chain.

키워드

참고문헌

  1. S. C. Lee & W. Y. Chung. (2014). A robust wearable u-healthcare platform in wireless sensor network. Journal of Communications and Networks, 16(4), 465-474. DOI : 10.1109/jcn.2014.000077
  2. T. W. Kim, K. H. Park, S. H. Yi & H. C. Kim. (2014, June). A Big Data Framework for u-Healthcare Systems Utilizing Vital Signs. Proceedings of the 2014 International Symposium on Computer, Consumer and Control(IS3C). (pp. 494-497). DOI : 10.1109/is3c.2014.135
  3. F. Touati, R. Tabish & A. Ben Mnaouer. (2014, April). Towards u-health: An indoor 6LoWPAN based platform for real-time healthcare monitoring. Proceedings of the 2013 6th Joint IFIP Wireless and Mobile Networking Conference(WMNC). (pp. 1-4).
  4. Y. S. Lee, N. Bruce, T. Non, E. Alasaarela & H. Lee. (2015, March). Hybrid Cloud Service Based Healthcare Solutions. Proceedings of the 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops (WAINA). (pp. 25-30).
  5. A. Singh & K. Chatterjee. (2017). Cloud security issues and challenges: A survey. Journal of Network and Computer Applications, 79, 88-115. https://doi.org/10.1016/j.jnca.2016.11.027
  6. S. Singh, Y. S. Jeong & J. H. Park. (2016). A survey on cloud computing security: Issues, threats, and solutions. Journal of Network and Computer Applications, 75, 200-222. DOI : 10.1016/j.jnca.2016.09.002
  7. J. Zhang, H. Huang & X. Wang. (2016). Resource provision algorithms in cloud computing: A survey. Journal of Network and Computer Applications, 64, 23-42. https://doi.org/10.1016/j.jnca.2015.12.018
  8. V. Varadharajan & U. Tupakula. (2014). Security as a service model for cloud environment. IEEE Transactions on Network and Service Management, 11(1), 60-75. DOI : 10.1109/tnsm.2014.041614.120394
  9. A. Iera, G. Morabito & L. Atzori. (2016). The internet of things moves into the cloud. Proceedings of the 2016 IEEE International Conference on Cloud Engineering Workshop (IC2EW). (pp. 191-191). DOI : 10.1109/ic2ew.2016.54
  10. H. N. Saha, A. Mandal & A. Sinha. (2017). Recent trends in the internet of things. Proceedings of the 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). (pp. 1-4). DOI : 10.1109/ccwc.2017.7868439
  11. A. Celesti, D. Mulfari, M. Fazio, M. Villari & A. Puliafito. (2016). Exploring container virtualization in iot clouds. Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP). (pp. 1-6). DOI : 10.1109/smartcomp.2016.7501691
  12. K. S. Dar, A. Taherkordi & F. Eliassen. (2016). Enhancing dependability of cloud-based iot services through virtualization. Proceedings of the 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), 2016. (pp. 106-116). DOI : 10.1109/iotdi.2015.38
  13. L. Echenauer & V. D. Gligor. (2002, Nov). A Key-Management scheme for Distributed sensor networks. Proceedings of the 9th ACM conference on Computer and communications security. (pp. 41-47).
  14. H. Chan, A. Perrig & D. Song. (2003, May). Random key predistribution schemes for Sensor networks. Proceedings of the 2003 IEEE Symposium on Security and Privacy. (pp. 197-213). DOI : 10.1109/secpri.2003.1199337
  15. S. Zhu, S. Setia & S. Jajodia. (2002). A distributed group key managemet protocol for ad hoc networks. Unpublished manuscript. George Mason University.
  16. A. Khalili, J. Katz & W. A. Arbaugh. (2003, Jan). Toward Secure key Distribution in Truly Ad-Hoc Networks. Proceedings of the 2003 Symposium on Applications and the Internet Workshops(SAINT'03 Workshops). (pp. 342-346). DOI : 10.1109/saintw.2003.1210183