DOI QR코드

DOI QR Code

이산화바나듐 나노구조물의 성장에서 그래핀 기판의 영향에 관한 연구

A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures

  • 김기출 (목원대학교 신소재화학공학과)
  • Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
  • 투고 : 2018.08.30
  • 심사 : 2018.10.20
  • 발행 : 2018.10.31

초록

금속 산화물/그래핀 형태의 복합 나노소재는 높은 전기용량을 갖는 2차 전지의 전극용 소재 또는 고감도 가스 센서의 감지물질 등으로 활용되는 매우 유용한 기능성 소재이다. 본 논문에서는 열 화학기상증착(CVD, Chemical Vapor Deposition)으로 Cu Foil 위에 대면적으로 합성된 CVD 그래핀 및 고정렬 열분해 흑연(HOPG, Highly Oriented Pyrolytic Graphite)으로부터 기계적으로 박리된 그래핀 기판 위에 이산화바나듐($VO_2$) 나노구조물을 기상수송방법으로 직접 성장시키는 연구를 수행하였다. 연구결과 CVD 그래핀 기판의 경우, 그래핀 결정 경계에서 상대적으로 많이 존재하는 기능기들이 $VO_2$ 나노구조물에서 핵형성의 씨앗으로 작용하는 것이 확인되었다. 반면에 HOPG에서 기계적으로 박리된 그래핀 나노시트 표면에는 기능기가 균일하게 분포하기 때문에, 2차원과 3차원 형태로 $VO_2$ 나노구조물이 성장되었다. 이러한 연구결과는 고기능성 $VO_2$/그래핀 나노복합소재를 이용하여 높은 전기용량을 갖는 2차 전지 전극소재 및 고감도 가스 센서의 감지물질 합성에 유용하게 활용될 것으로 전망된다.

The metal oxide/graphene nanocomposites are promising functional materials for high capacitive electrode material of secondary batteries, and high sensitive material of high performance gas sensors. In this study, vanadium dioxide($VO_2$) nanostructrures were grown on CVD graphene which was synthesized on Cu foil by thermal CVD, and exfoliated graphene which was exfoliated from highly oriented pyrolytic graphite(HOPG) using a vapor transport method. As results, $VO_2$ nanostructures on CVD graphene were grown preferential growth on abundant functional groups of graphene grain boundaries. The functional groups are served to nucleation site of $VO_2$ nanostructures. On the other hand, 2D & 3D $VO_2$ nanostructures were grown on exfoliated graphene due to uniformly distributed functional groups on exfoliated graphene surface. The characteristics of morphology controlled growth of $VO_2$/graphene nanocomposites would be applied to fabrication process for high capacitive electrode materials of secondary batteries, and high sensitive materials of gas sensors.

키워드

참고문헌

  1. G. H. Jeong, S. Baek, S. Lee & S. W. Kim (2016). Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials. Chemistry an Asian Journal, 11, 949-964. DOI : 10.1002/asia.2015010172
  2. Y. Deng, C. Fang & G. Chen. (2016). The Development of $SnO_2$/graphene Nanocomposites as Anode Materials for High Performance Lithium Ion Batteries: A review. Journal of Power Sources, 304, 81-101. DOI : 10.1126/science.1252268
  3. G. M. Thorat, H. S. Jadhav, W. J. Chung & J. G. Seo. (2018). Collective use of Deep Eutectic Solvent for One-pot Synthesis of Ternary Sn/$SnO_2@C$ Electrode for Supercapacitor. Journal of Alloys and Compounds, 732, 694-704. DOI : 10.1016/j.jallcom.2017.10.176
  4. X. Wang, et al. (2012). N-Doped Graphene-$SnO_2$ Sandwich Paper for High-Performance Lithium-Ion Batteries. Advanced Functional Materials 22, 2682-2690. DOI : 10.1002/adfm.201103110
  5. Y. Yang, et al. (2018). Phosphorized $SnO_2$/graphene Heterostructures for Highly Reversible Lithium-ion Storage with Enhanced Pseudocapacitance. Journal of Materials Chemistry A, 6, 3479-3487. DOI : 10.1039/c7ta10435a
  6. K. S. Novoselov, et al. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. DOI : 10.1126/science.1102896
  7. K. S. Kim, et al. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706-710. DOI : 10.1038/nature07719
  8. X. Li, et al. (2009). Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314. DOI : 10.1126/science.1171245
  9. J. H. Lee, et al. (2014). Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 344, 286-289. DOI : 10.1126/science.1252268
  10. W. Wang, B. Jiang, L. Hu. Z. Lin, J. Hou & S. Jiao. (2014). Single Crystalline $VO_2$ Nanosheets: A Cathode Material for Sodium-ion Batteries with High Rate Cycling Performance. Journal of Power Sources, 250, 181-187. DOI : 10.1016/j.jpowsour.2013.11.016
  11. E. Strelcov, Y. Lilach & A. Kolmakov. (2009). Gas Sensor Baded on Metal-Insulator Transition in $VO_2$ Nanowire Thermistor. Nano Letters, 9(6), 2322-2326. DOI : 10.1021/nl900676n
  12. J. S. Choi, et al. (2016). Facile Fabrication of Properties-controllable Graphene Sheet. Scientific Reports, 6, 24525. DOI : 10.1038/srep24525
  13. B. S. Guiton, Q. Gu, A. L. Prieo, M. S. Gudiksen & H. Park. (2005). Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections. Journal of the American Chemical Society, 127, 498-499. DOI : 10.1021/ja045976g
  14. S. A. Oh & K. C. Kim. (2016). Growth of Two-dimensional Nanostructured $VO_2$ on Graphene Nanosheets. Journal of the Korea Academia-Industrial cooperation Society, 17(9), 502-507. DOI : 10.5762/KAIS.2016.17.9.502
  15. H. Wang, et al. (2012). Controllable Synthesis of Submilimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation. Journal of the American Chemical Society, 134, 3627-3630. DOI : 10.1021/ja2105976
  16. Z. Yan, et al. (2012). Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano, 6(10), 9110-9117. DOI : 10.1021/nn303352k
  17. G. I. Petrov & V. V. Yakovlev. (2002). Raman Microscopy Analysis of Phase Transformation Mechanism in Vanadium Dioxide. Applied Physics Letters, 81, 1023-1025. DOI : 10.1063/1.1496506