DOI QR코드

DOI QR Code

Prediction of removal percentage and adsorption capacity of activated red mud for removal of cyanide by artificial neural network

  • Deihimi, Nazanin (Department of Mining & Metallurgical Engineering, Amirkabir University of Technology) ;
  • Irannajad, Mehdi (Department of Mining & Metallurgical Engineering, Amirkabir University of Technology) ;
  • Rezai, Bahram (Department of Mining & Metallurgical Engineering, Amirkabir University of Technology)
  • Received : 2017.11.04
  • Accepted : 2018.01.02
  • Published : 2018.11.30

Abstract

In this study, the activated red mud was used as a new and appropriate adsorbent for the removal of ferrocyanide and ferricyanide from aqueous solution. Predicting the removal percentage and adsorption capacity of ferro-ferricyanide by activated red mud during the adsorption process is necessary which has been done by modeling and simulation. The artificial neural network (ANN) was used to develop new models for the predictions. A back propagation algorithm model was trained to develop a predictive model. The effective variables including pH, absorbent amount, absorbent type, ionic strength, stirring rate, time, adsorbate type, and adsorbate dosage were considered as inputs of the models. The correlation coefficient value ($R^2$) and root mean square error (RMSE) values of the testing data for the removal percentage and adsorption capacity using ANN models were 0.8560, 12.5667, 0.9329, and 10.8117, respectively. The results showed that the proposed ANN models can be used to predict the removal percentage and adsorption capacity of activated red mud for the removal of ferrocyanide and ferricyanide with reasonable error.

Keywords

References

  1. Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-459. https://doi.org/10.1002/wics.101
  2. Adhoum, N., & Monser, L. (2002). Removal of cyanide from aqueous solution using impregnated activated carbon. Chemical Engineering and Processing: Process Intensification, 41(1), 17-21. https://doi.org/10.1016/S0255-2701(00)00156-2
  3. Al-Thyabat, S. (2008). On the optimization of froth flotation by the use of an artificial neural network. Journal of China University of Mining and Technology, 18(3), 418-426. https://doi.org/10.1016/S1006-1266(08)60087-5
  4. Altundogan, H. S., Altundogan, S., Tumen, F., & Bildik, M. (2002). Arsenic adsorption from aqueous solutions by activated red mud. Waste Management, 22(3), 357-363. https://doi.org/10.1016/S0956-053X(01)00041-1
  5. Apak, R., Guclu, K., & Turgut, M. H. (1998). Modeling of copper (II), cadmium (II), and lead (II) adsorption on red mud. Journal of Colloid and Interface Science, 203(1), 122-130. https://doi.org/10.1006/jcis.1998.5457
  6. Bushey, J. T., & Dzombak, D. A. (2004). Ferrocyanide adsorption on aluminum oxides. Journal of Colloid and Interface Science, 272(1), 46-51. https://doi.org/10.1016/j.jcis.2003.09.024
  7. Cengeloglu, Y., Kir, E., & Ersoz, M. (2002). Removal of fluoride from aqueous solution by using red mud. Separation and Purification Technology, 28(1), 81-86. https://doi.org/10.1016/S1383-5866(02)00016-3
  8. Cengeloglu, Y., Tor, A., Ersoz, M., & Arslan, G. (2006). Removal of nitrate from aqueous solution by using red mud. Separation and Purification Technology, 51(3), 374-378. https://doi.org/10.1016/j.seppur.2006.02.020
  9. Cheng, W. P., Huang, C., & Pan, J. R. (1999). Adsorption behavior of iron-cyanide onto ${\gamma}$-Al2O3 interface: A coagulation approach. Journal of Colloid and Interface Science, 213(1), 204-207. https://doi.org/10.1006/jcis.1999.6100
  10. Dash, R. R., Gaur, A., & Balomajumder, C. (2009). Cyanide in industrial wastewaters and its removal: A review on biotreatment. Journal of Hazardous Materials, 163(1), 1-11. https://doi.org/10.1016/j.jhazmat.2008.06.051
  11. Eisler, R., & Wiemeyer, S. N. (2004). Cyanide hazards to plants and animals from gold mining and related water issues. In G. W. Ware (Ed.), Reviews of environmental contamination and toxicology (pp. 21-54). New York, NY: Springer.
  12. Esfandian, H., Parvini, M., Khoshandam, B., & Samadi-Maybodi, A. (2016). Artificial neural network (ANN) technique for modeling the mercury adsorption from aqueous solution using Sargassum Bevanom algae. Desalination and Water Treatment, 57(37), 17206-17219. https://doi.org/10.1080/19443994.2015.1086696
  13. Fotoohi, F., Amjad-Iranagh, S., Golzar, K., & Modarress, H. (2016). Predicting pure and binary gas adsorption on activated carbon with two-dimensional cubic equations of state (2-D EOSs) and artificial neural network (ANN) method. Physics and Chemistry of Liquids, 54(3), 281-302. https://doi.org/10.1080/00319104.2015.1084877
  14. Gebresemati, M., Gabbiye, N., & Sahu, O. (2017). Sorption of cyanide from aqueous medium by coffee husk: Response surface methodology. Journal of Applied Research and Technology, 15(1), 27-35. https://doi.org/10.1016/j.jart.2016.11.002
  15. Genc-Fuhrman, H., Tjell, J. C., & McConchie, D. (2004). Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol). Journal of Colloid and Interface Science, 271(2), 313-320. https://doi.org/10.1016/j.jcis.2003.10.011
  16. Geyikci, F., Kilic, E., Coruh, S., & Elevli, S. (2012). Modelling of lead adsorption from industrial sludge leachate on red mud by using RSM and ANN. Chemical Engineering Journal, 183, 53-59. https://doi.org/10.1016/j.cej.2011.12.019
  17. Hanela, S., Duran, J., & Jacobo, S. (2015). Removal of iron-cyanide complexes from wastewaters by combined UV-ozone and modified zeolite treatment. Journal of Environmental Chemical Engineering, 3(3), 1794-1801. https://doi.org/10.1016/j.jece.2015.06.023
  18. Hoseinian, F. S., Abdollahzade, A., Mohamadi, S. S., & Hashemzadeh, M. (2017). Recovery prediction of copper oxide ore column leaching by hybrid neural genetic algorithm. Transactions of Nonferrous Metals Society of China, 27(3), 686-693. https://doi.org/10.1016/S1003-6326(17)60076-1
  19. Hoseinian, F. S., Faradonbeh, R. S., Abdollahzadeh, A., Rezai, B., & Soltani-Mohammadi, S. (2017). Semi-autogenous mill power model development using gene expression programming. Powder Technology, 308, 61-69. https://doi.org/10.1016/j.powtec.2016.11.045
  20. Jorjani, E., Chelgani, S. C., & Mesroghli, S. (2007). Prediction of microbial desulfurization of coal using artificial neural networks. Minerals Engineering, 20(14), 1285-1292. https://doi.org/10.1016/j.mineng.2007.07.003
  21. Kumar, R., Saha, S., Dhaka, S., Kurade, M. B., Kang, C. U., Baek, S. H., & Jeon, B.-H. (2017). Remediation of cyanidecontaminated environments through microbes and plants: A review of current knowledge and future perspectives. Geosystem Engineering, 20(1), 28-40. https://doi.org/10.1080/12269328.2016.1218303
  22. Li, D., Ding, Y., Li, L., Chang, Z., Rao, Z., & Lu, L. (2015). Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide. Environmental Technology, 36(9), 1084-1090. https://doi.org/10.1080/09593330.2014.975286
  23. Liu, C.-J., Li, Y.-Z., Luan, Z.-K., Chen, Z.-Y., Zhang, Z.-G., & Jia, Z.-P. (2007). Adsorption removal of phosphate from aqueous solution by active red mud. Journal of Environmental Sciences, 19(10), 1166-1170. https://doi.org/10.1016/S1001-0742(07)60190-9
  24. Masomi, M., Ghoreyshi, A. A., Najafpour, G. D., & Mohamed, A. R. B. (2015). Dynamic adsorption of phenolic compounds on activated carbon produced from pulp and paper mill sludge: Experimental study and modeling by artificial neural network (ANN). Desalination and Water Treatment, 55(6), 1453-1466. https://doi.org/10.1080/19443994.2014.926834
  25. Massinaei, M., & Doostmohammadi, R. (2010). Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques. Minerals Engineering, 23(2), 83-90. https://doi.org/10.1016/j.mineng.2009.10.005
  26. Mihai, O., Calin, C., Marinescu, C., Natu, N., Pantea, O., & Matei, D. (2016). The adsorption study of the cyanides using solid adsorbents. Adsorption, 1, 11.
  27. Noroozifar, M., Khorasani-Motlagh, M., & Fard, P. A. (2009). Cyanide uptake from wastewater by modified natrolite zeolite-iron oxyhydroxide system: Application of isotherm and kinetic models. Journal of Hazardous Materials, 166(2), 1060-1066. https://doi.org/10.1016/j.jhazmat.2008.12.012
  28. Pradhan, J., Das, J., Das, S., & Thakur, R. S. (1998). Adsorption of phosphate from aqueous solution using activated red mud. Journal of Colloid and Interface Science, 204(1), 169-172. https://doi.org/10.1006/jcis.1998.5594
  29. Pradhan, J., Das, S. N., & Thakur, R. S. (1999). Adsorption of hexavalent chromium from aqueous solution by using activated red mud. Journal of Colloid and Interface Science, 217(1), 137-141. https://doi.org/10.1006/jcis.1999.6288
  30. Rennert, T. (2002). Sorption of iron-cyanide complexes on iron oxides and in soils (Dissertation). Ruhr-Universitat Bochum, Germany.
  31. Shojaeimehr, T., Rahimpour, F., Khadivi, M. A., & Sadeghi, M. (2014). A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on $Cu^{2+}$ adsorption optimization using light expended clay aggregate (LECA). Journal of Industrial and Engineering Chemistry, 20(3), 870-880. https://doi.org/10.1016/j.jiec.2013.06.017
  32. Theis, T. L., Iyer, R., & Kaul, L. W. (1988). Kinetic studies of cadmium and ferricyanide adsorption of goethite. Environmental Science & Technology, 22(9), 1013-1017. https://doi.org/10.1021/es00174a003
  33. Tiryaki, B. (2008). Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees. Engineering Geology, 99(1), 51-60. https://doi.org/10.1016/j.enggeo.2008.02.003
  34. Wang, S., Boyjoo, Y., Choueib, A., & Zhu, Z. (2005). Removal of dyes from aqueous solution using fly ash and red mud. Water Research, 39(1), 129-138. https://doi.org/10.1016/j.watres.2004.09.011
  35. Zimmerman, A. R., Kang, D.-H., Ahn, M.-Y., Hyun, S., & Banks, M. K. (2008). Influence of a soil enzyme on ironcyanide complex speciation and mineral adsorption. Chemosphere, 70(6), 1044-1051. https://doi.org/10.1016/j.chemosphere.2007.07.075