DOI QR코드

DOI QR Code

Inhibition of miR-128 Abates Aβ-Mediated Cytotoxicity by Targeting PPAR-γ via NF-κB Inactivation in Primary Mouse Cortical Neurons and Neuro2a Cells

  • Geng, Lijiao (Department of Rehabilitation Medicine, Huaihe Hospital of Henan University) ;
  • Zhang, Tao (Department of Neurology, Huaihe Hospital of Henan University) ;
  • Liu, Wei (Department of Neurology, Huaihe Hospital of Henan University) ;
  • Chen, Yong (Department of Rehabilitation Medicine, Huaihe Hospital of Henan University)
  • Received : 2018.03.14
  • Accepted : 2018.07.12
  • Published : 2018.11.01

Abstract

Purpose: Alzheimer's disease (AD) is the sixth most common cause of death in the United States. MicroRNAs have been identified as vital players in neurodegenerative diseases, including AD. microRNA-128 (miR-128) has been shown to be dysregulated in AD. This study aimed to explore the roles and molecular mechanisms of miR-128 in AD progression. Materials and Methods: Expression patterns of miR-128 and peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) messenger RNA in clinical samples and cells were measured using RT-qPCR assay. $PPAR-{\gamma}$ protein levels were determined by Western blot assay. Cell viability was determined by MTT assay. Cell apoptotic rate was detected by flow cytometry via double-staining of Annexin V-FITC/PI. Caspase 3 and $NF-{\kappa}B$ activity was determined by a Caspase 3 Activity Assay Kit or $NF-{\kappa}B$ p65 Transcription Factor Assay Kit, respectively. Bioinformatics prediction and luciferase reporter assay were used to investigate interactions between miR-128 and $PPAR-{\gamma}$ 3'UTR. Results: MiR-128 expression was upregulated and $PPAR-{\gamma}$ expression was downregulated in plasma from AD patients and $amyloid-{\beta}$ $(A{\beta})-treated$ primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells. Inhibition of miR-128 decreased $A{\beta}-mediated$ cytotoxicity through inactivation of $NF-{\kappa}B$ in MCN and N2a cells. Moreover, $PPAR-{\gamma}$ was a target of miR-128. $PPAR-{\gamma}$ upregulation attenuated $A{\beta}-mediated$ cytotoxicity by inactivating $NF-{\kappa}B$ in MCN and N2a cells. Furthermore, $PPAR-{\gamma}$ downregulation was able to abolish the effect of anti-miR-128 on cytotoxicity and $NF-{\kappa}B$ activity in MCN and N2a cells. Conclusion: MiR-128 inhibitor decreased $A{\beta}-mediated$ cytotoxicity by upregulating $PPAR-{\gamma}$ via inactivation of $NF-{\kappa}B$ in MCN and N2a cells, providing a new potential target in AD treatment.

Keywords

References

  1. Alzheimer's Association. 2016 Alzheimer's disease facts and figures. Alzheimers Dement 2016;12:459-509. https://doi.org/10.1016/j.jalz.2016.03.001
  2. Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014;88:640-51. https://doi.org/10.1016/j.bcp.2013.12.024
  3. Kumar A, Singh A, Ekavali. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol Rep 2015;67:195-203. https://doi.org/10.1016/j.pharep.2014.09.004
  4. Kim DH, Yeo SH, Park JM, Choi JY, Lee TH, Park SY, et al. Genetic markers for diagnosis and pathogenesis of Alzheimer's disease. Gene 2014;545:185-93. https://doi.org/10.1016/j.gene.2014.05.031
  5. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 2016;8:595-608. https://doi.org/10.15252/emmm.201606210
  6. Kang S, Lee YH, Lee JE. Metabolism-Centric Overview of the Pathogenesis of Alzheimer's Disease. Yonsei Med J 2017;58:479-88. https://doi.org/10.3349/ymj.2017.58.3.479
  7. Memet S. NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 2006;72:1180-95. https://doi.org/10.1016/j.bcp.2006.09.003
  8. Shi ZM, Han YW, Han XH, Zhang K, Chang YN, Hu ZM, et al. Upstream regulators and downstream effectors of $NF-{\kappa}B$ in Alzheimer's disease. J Neurol Sci 2016;366:127-34. https://doi.org/10.1016/j.jns.2016.05.022
  9. Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 2009;7:147-54. https://doi.org/10.1016/S1672-0229(08)60044-3
  10. Karnati HK, Panigrahi MK, Gutti RK, Greig NH, Tamargo IA. miRNAs: key players in neurodegenerative disorders and epilepsy. J Alzheimers Dis 2015;48:563-80. https://doi.org/10.3233/JAD-150395
  11. Adlakha YK, Saini N. Brain microRNAs and insights into biological functions and therapeutic potential of brain enriched miRNA-128. Mol Cancer 2014;13:33. https://doi.org/10.1186/1476-4598-13-33
  12. Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport 2007;18:297-300. https://doi.org/10.1097/WNR.0b013e3280148e8b
  13. Muller M, Kuiperij HB, Claassen JA, Kusters B, Verbeek MM. MicroRNAs in Alzheimer's disease: differential expression in hippocampus and cell-free cerebrospinal fluid. Neurobiol Aging 2014;35:152-8. https://doi.org/10.1016/j.neurobiolaging.2013.07.005
  14. Jiang Q, Heneka M, Landreth GE. The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer's disease: therapeutic implications. CNS Drugs 2008;22:1-14. https://doi.org/10.2165/00023210-200822010-00001
  15. Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, et al. Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci U S A 2006;103:443-8. https://doi.org/10.1073/pnas.0503839103
  16. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer's disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 2000;20:558-67. https://doi.org/10.1523/JNEUROSCI.20-02-00558.2000
  17. Fakhfouri G, Ahmadiani A, Rahimian R, Grolla AA, Moradi F, Haeri A. WIN55212-2 attenuates amyloid-beta-induced neuroinflammation in rats through activation of cannabinoid receptors and PPAR-${\gamma}$ pathway. Neuropharmacology 2012;63:653-66. https://doi.org/10.1016/j.neuropharm.2012.05.013
  18. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol 2014;13:614-29. https://doi.org/10.1016/S1474-4422(14)70090-0
  19. Schmidt K. Clinical dementia rating scale. In: Michalos AC, editor. Encyclopedia of quality of life and well-being research. Dordrecht: Springer; 2014. p.957-60.
  20. Mitchell AJ. The Mini-Mental State Examination (MMSE): update on its diagnostic accuracy and clinical utility for cognitive disorders. In: Larner AJ, editor. Cognitive screening instruments. Cham: Springer; 2017. p.37-48.
  21. Krichevsky AM, Kosik KS. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 2001;32:683-96. https://doi.org/10.1016/S0896-6273(01)00508-6
  22. Chen YC, Wu JS, Tsai HD, Huang CY, Chen JJ, Sun GY, et al. Peroxisome proliferator-activated receptor gamma (PPAR-${\gamma}$) and neurodegenerative disorders. Mol Neurobiol 2012;46:114-24. https://doi.org/10.1007/s12035-012-8259-8
  23. Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS, et al. A critical evaluation of neuroprotective and neurodegenerative MicroRNAs in Alzheimer's disease. Biochem Biophys Res Commun 2017;483:1156-65. https://doi.org/10.1016/j.bbrc.2016.08.067
  24. Femminella GD, Ferrara N, Rengo G. The emerging role of microRNAs in Alzheimer's disease. Front Physiol 2015;6:40.
  25. Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: an integrative review. Prog Neurobiol 2017;156:1-68. https://doi.org/10.1016/j.pneurobio.2017.03.004
  26. Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-${\beta}$ precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem 2012;287:31298-310. https://doi.org/10.1074/jbc.M112.366336
  27. Absalon S, Kochanek DM, Raghavan V, Krichevsky AM. MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tauphosphorylation, and apoptosis in postmitotic neurons. J Neurosci 2013;33:14645-59. https://doi.org/10.1523/JNEUROSCI.1327-13.2013
  28. McSweeney KM, Gussow AB, Bradrick SS, Dugger SA, Gelfman S, Wang Q, et al. Inhibition of microRNA 128 promotes excitability of cultured cortical neuronal networks. Genome Res 2016;26:1411-6. https://doi.org/10.1101/gr.199828.115
  29. Tiribuzi R, Crispoltoni L, Porcellati S, Di Lullo M, Florenzano F, Pirro M, et al. miR128 up-regulation correlates with impaired amyloid ${\beta}$(1-42) degradation in monocytes from patients with sporadic Alzheimer's disease. Neurobiol Aging 2014;35:345-56. https://doi.org/10.1016/j.neurobiolaging.2013.08.003
  30. Guidi M, Muinos-Gimeno M, Kagerbauer B, Marti E, Estivill X, Espinosa-Parrilla Y. Overexpression of miR-128 specifically inhibits the truncated isoform of NTRK3 and upregulates BCL2 in SHSY5Y neuroblastoma cells. BMC Mol Biol 2010;11:95. https://doi.org/10.1186/1471-2199-11-95
  31. Kaltschmidt B, Uherek M, Volk B, Baeuerle PA, Kaltschmidt C. Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci U S A 1997;94:2642-7. https://doi.org/10.1073/pnas.94.6.2642
  32. Valerio A, Boroni F, Benarese M, Sarnico I, Ghisi V, Bresciani LG, et al. NF-kappaB pathway: a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur J Neurosci 2006;23:1711-20. https://doi.org/10.1111/j.1460-9568.2006.04722.x
  33. Lin W, Ding M, Xue J, Leng W. The role of TLR2/JNK/$NF-{\kappa}B$ pathway in amyloid ${\beta}$ peptide-induced inflammatory response in mouse NG108-15 neural cells. Int Immunopharmacol 2013;17:880-4. https://doi.org/10.1016/j.intimp.2013.09.016
  34. Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol 2018;38:121-32. https://doi.org/10.1007/s10571-017-0554-5
  35. Corona JC, Duchen MR. $PPAR{\gamma}$ as a therapeutic target to rescue mitochondrial function in neurological disease. Free Radic Biol Med 2016;100:153-63. https://doi.org/10.1016/j.freeradbiomed.2016.06.023
  36. Lezana JP, Dagan SY, Robinson A, Goldstein RS, Fainzilber M, Bronfman FC, et al. Axonal $PPAR{\gamma}$ promotes neuronal regeneration after injury. Dev Neurobiol 2016;76:688-701. https://doi.org/10.1002/dneu.22353
  37. Landreth G, Jiang Q, Mandrekar S, Heneka M. PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease. Neurotherapeutics 2008;5:481-9. https://doi.org/10.1016/j.nurt.2008.05.003
  38. Toba J, Nikkuni M, Ishizeki M, Yoshii A, Watamura N, Inoue T, et al. $PPAR{\gamma}$ agonist pioglitazone improves cerebellar dysfunction at pre-$A{\beta}$ deposition stage in APPswe/PS1dE9 Alzheimer's disease model mice. Biochem Biophys Res Commun 2016;473:1039-44. https://doi.org/10.1016/j.bbrc.2016.04.012
  39. de la Monte SM, Wands JR. Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer's disease. J Alzheimers Dis 2006;9:167-81. https://doi.org/10.3233/JAD-2006-9209
  40. Kitamura Y, Shimohama S, Koike H, Kakimura Ji, Matsuoka Y, Nomura Y, et al. Increased expression of cyclooxygenases and peroxisome proliferator-activated receptor-gamma in Alzheimer's disease brains. Biochem Biophys Res Commun 1999;254:582-6. https://doi.org/10.1006/bbrc.1998.9981
  41. Inestrosa NC, Godoy JA, Quintanilla RA, Koenig CS, Bronfman M. Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents beta-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 2005;304:91-104. https://doi.org/10.1016/j.yexcr.2004.09.032
  42. Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van Leuven F, et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 2003;23:9796-804. https://doi.org/10.1523/JNEUROSCI.23-30-09796.2003
  43. Camacho IE, Serneels L, Spittaels K, Merchiers P, Dominguez D, De Strooper B. Peroxisome-proliferator-activated receptor gamma induces a clearance mechanism for the amyloid-beta peptide. J Neurosci 2004;24:10908-17. https://doi.org/10.1523/JNEUROSCI.3987-04.2004
  44. d'Abramo C, Massone S, Zingg JM, Pizzuti A, Marambaud P, Dalla Piccola B, et al. Role of peroxisome proliferator-activated receptor gamma in amyloid precursor protein processing and amyloid beta-mediated cell death. Biochem J 2005;391(Pt 3):693-8. https://doi.org/10.1042/BJ20050560

Cited by

  1. MicroRNAs in Alzheimer’s Disease: Diagnostic Markers or Therapeutic Agents? vol.10, pp.None, 2018, https://doi.org/10.3389/fphar.2019.00665
  2. Amyloid Beta and MicroRNAs in Alzheimer’s Disease vol.13, pp.None, 2018, https://doi.org/10.3389/fnins.2019.00430
  3. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks vol.20, pp.5, 2019, https://doi.org/10.3390/ijms20051223
  4. MicroRNA in Brain pathology: Neurodegeneration the Other Side of the Brain Cancer vol.5, pp.1, 2018, https://doi.org/10.3390/ncrna5010020
  5. Aβ1-42 increases the expression of neural KATP subunits Kir6.2/SUR1 via the NF-κB, p38 MAPK and PKC signal pathways in rat primary cholinergic neurons vol.38, pp.6, 2018, https://doi.org/10.1177/0960327119833742
  6. Tanshinone IIA attenuates Aβ-induced neurotoxicity by down-regulating COX-2 expression and PGE2 synthesis via inactivation of NF-κB pathway in SH-SY5Y cells vol.26, pp.1, 2019, https://doi.org/10.1186/s40709-019-0102-1
  7. MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure vol.7, pp.None, 2018, https://doi.org/10.1016/j.toxrep.2020.05.003
  8. RNA and Oxidative Stress in Alzheimer's Disease: Focus on microRNAs vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/2638130
  9. Molecular Pathogenesis and Interventional Strategies for Alzheimer’s Disease: Promises and Pitfalls vol.3, pp.3, 2018, https://doi.org/10.1021/acsptsci.9b00104
  10. miR-34a-5p and miR-125b-5p attenuate Aβ-induced neurotoxicity through targeting BACE1 vol.413, pp.None, 2020, https://doi.org/10.1016/j.jns.2020.116793
  11. Plasma microRNAs biomarkers in mild cognitive impairment among patients with type 2 diabetes mellitus vol.15, pp.7, 2020, https://doi.org/10.1371/journal.pone.0236453
  12. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases vol.22, pp.2, 2018, https://doi.org/10.3390/ijms22020805
  13. Serum miR-128 Serves as a Potential Diagnostic Biomarker for Alzheimer’s Disease vol.17, pp.None, 2018, https://doi.org/10.2147/ndt.s290925
  14. The Eminent Role of microRNAs in the Pathogenesis of Alzheimer's Disease vol.13, pp.None, 2018, https://doi.org/10.3389/fnagi.2021.641080
  15. miR-128 regulated the proliferation and autophagy in porcine adipose-derived stem cells through targeting the JNK signaling pathway vol.41, pp.2, 2018, https://doi.org/10.1080/10799893.2020.1805627
  16. Mechanism of ARPP21 antagonistic intron miR‐128 on neurological function repair after stroke vol.8, pp.7, 2021, https://doi.org/10.1002/acn3.51379
  17. Bis(ethylmaltolato)oxidovanadium (IV) attenuates amyloid-beta-mediated neuroinflammation by inhibiting NF-κB signaling pathway via a PPARγ-dependent mechanism vol.13, pp.7, 2018, https://doi.org/10.1093/mtomcs/mfab036
  18. Systematic Search for Novel Circulating Biomarkers Associated with Extracellular Vesicles in Alzheimer’s Disease: Combining Literature Screening and Database Mining Approaches vol.11, pp.10, 2018, https://doi.org/10.3390/jpm11100946