DOI QR코드

DOI QR Code

Derivation of Optimal Conditions and Effect of Treated Water Quality for Treatment of Drinking Water using Inorganic Membrane

무기막을 사용한 먹는물 처리 시 최적의 조건 도출 및 처리수질에 미치는 영향

  • Won, Chan-Hee (Division of Civil, Environmental, Mineral Resource and Energy Engineering, Chonbuk National University)
  • 원찬희 (전북대학교 토목/환경/자원.에너지공학부 (환경공학))
  • Received : 2018.10.16
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

In this study, the treatment efficiency of inorganic membrane according to the flux that blending raw water was investigated at the laboratory level. Based on the results of each blending and flux, we obtained the best efficiency according to each measurement item. The treatment efficiencies were different depending on the raw water and treatment amount of the treated water. Especially, turbidity removal efficiency was high. In the case of $UV_{254}$, the removal efficiency according to the concentration of the raw water and the removal efficiency according to the flux of the treated water showed a maximum of 69 % to minimum of 48 %. In the case of TOC and DOC, the processing efficiency was 22 % and 28 %, respectively, because the organic value of the raw water was low. These results suggest that there is an optimal process to effectively remove contaminants from the inorganic membrane process, and it is necessary to optimize it according to operating conditions.

본 연구는 정수처리장의 유기막의 처리수와 원수의 블렌딩된 혼합시료를 이용하여 무기막 처리 시 flux의 량에 따른 처리 효율을 실험실 수준에서 규명하였다. 각각의 설정된 블렌딩과 flux의 값에 따라 어떠한 성능을 내는지 고찰하고, 이를 바탕으로 각 측정항목에 따른 최고의 효율을 도출하였다. 처리원수의 수질과 처리량에 따라 서로 다른 처리효율을 보였으며, 특히 탁도제거에 큰 효율을 보였다. 또한 $UV_{254}$의 경우 처리 원수와 flux에 따른 제거 효율이 최대 69 %에서 최소 48 %로 원수의 농도에 따라 다른 제거율을 보였으며, TOC와 DOC의 경우 원수의 값이 낮아 처리 효율이 최대 22 %와 28 %의 값을 나타내었다. 이상의 결과는 무기막 공정에서 오염물질이 효과적으로 제거되는 최적의 공정이 존재함을 시사하며, 대상 원수와 운전조건에 따른 최적화가 필요함을 보인다.

Keywords

References

  1. Hwang. S. H., A Study on Water Quality Characteristics of Concentrate and Dewatering of Settled Sludge from PMR (PAC+ Membrane Retrofitting) Process, Master's Thesis, Department of Environmental Engineering The Graduate School Yonsei University, 2012.
  2. Kim, J. R., Song., H. I., Kim, C. H., Lim, J. L., Jung, J. H., Kanto, Y., Development of high rate membrane system for Using Ceramic Membrane(2). Journal of Korea Society on Water Environment, (0), 316-324, 2007.
  3. Kim, J. H., and Mun, B. S., and Jang, H. J., and Kim, J. H., and Kim, B. S., Increase of Recovery Ratio by Two Stage Membrane Process (the Pressurized PVDF Membrane Followed by Submerged PE Membrane. Membrane Journal, 23(1), 45-53, 2013.
  4. M. H. Cho, C. H. Lee, and S. H. Lee,. Effect of Flocculation Conditions on Membrane Permeability Incoagulation-Microfiltration, Desalination, 191, 386, 2006. https://doi.org/10.1016/j.desal.2005.08.017
  5. K. Konieczny, M. Bodzek, and M. Rajca., A coagulation-MF system for water treatment using ceramic membranes, Desalination, 198, 92, 2006. https://doi.org/10.1016/j.desal.2006.09.014
  6. Park, J. Y., Choi, S. J., and Park, B. R., Effect of N2-back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment, Desalination, 202-207, 2007.
  7. Kim, S. J., Jeon, Y. T., Jee, S. I., Cha, H. J., Song, Y. S., Won, C. H., Jin, M. J., Research on the optimal operation of Membrane filtration wastewater treatment system, J. of Korean Society of Environmental Technology, 16(2), 109-116, 2015.
  8. Jee, H. J., Research on the optimal operation of Membrane filtration wastewater treatment system, Master's Thesis, Department of Environmental Engineering, Chonbuk National University, 2014.
  9. Korean Ministry of Environment, Analysis result of the operation and management of drinking water in 2015, 2015.
  10. Yoon, T. H., A study of turbidity responsiveness in a pilot-scale hybrid process combined with organic and ceramic membranes process, Master's Thesis, Civil, Architectural and Environmental System Engineering, Sungkyunkwan University, 2014.