DOI QR코드

DOI QR Code

High thermoelectric performance and low thermal conductivity in K-doped SnSe polycrystalline compounds

  • Lin, Chan-Chieh (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University) ;
  • Ginting, Dianta (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University) ;
  • Kim, Gareoung (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University) ;
  • Ahn, Kyunghan (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University) ;
  • Rhyee, Jong-Soo (Dept. of Applied Physics and Institutes of Natural Sciences, Kyung Hee University)
  • Received : 2018.07.30
  • Accepted : 2018.09.20
  • Published : 2018.12.31

Abstract

SnSe single crystal showed a high thermoelectric zT of 2.6 at 923 K mainly due to an extremely low thermal conductivity $0.23W\;m^{-1}\;K^{-1}$. It has anisotropic crystal structure resulting in deterioration of thermoelectric performance in polycrystalline SnSe, providing a low zT of 0.6 and 0.8 for Ag and Na-doped SnSe, respectively. Here, we presented the thermoelectric properties on the K-doped $K_xSn_{1-x}Se$ (x = 0, 0.1, 0.3, 0.5, 1.5, and 2.0%) polycrystals, synthesized by a high-temperature melting and hot-press sintering with annealing process. The K-doping in SnSe efficiently enhances the hole carrier concentration without significant degradation of carrier mobility. We find that there exist widespread Se-rich precipitates, inducing strong phonon scattering and thus resulting in a very low thermal conductivity. Due to low thermal conductivity and moderate power factor, the $K_{0.001}Sn_{0.999}Se$ sample shows an exceptionally high zT of 1.11 at 823 K which is significantly enhanced value in polycrystalline compounds.

Keywords

Acknowledgement

Supported by : Korea Evaluation Institute of Industrial Technology (KEIT)

References

  1. J.G. Yu, A. Yue, O. Stafsudd, J. Cryst. Growth 54 (1981) 248-252. https://doi.org/10.1016/0022-0248(81)90469-3
  2. J. Wasscher, W. Albers, C. Haas, Solid State Electron. 6 (1963) 261-264. https://doi.org/10.1016/0038-1101(63)90083-2
  3. L.E. Bell, Science 321 (2008) 1457-1461. https://doi.org/10.1126/science.1158899
  4. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508 (2014) 373-377. https://doi.org/10.1038/nature13184
  5. H. Zhang, D.V. Talapin, Angew. Chem. Int. Ed. 53 (2014) 9126-9127. https://doi.org/10.1002/anie.201405683
  6. J. Carrete, N. Mingo, S. Curtarolo, Appl. Phys. Lett. 105 (2014) 101907. https://doi.org/10.1063/1.4895770
  7. G. Ding, G. Gao, K. Yao, Sci. Rep. 5 (2015) 9567. https://doi.org/10.1038/srep09567
  8. X. Guan, P. Lu, L. Wu, L. Han, G. Liu, Y. Song, S. Wang, J. Alloys Compd. 643 (2015) 116-120. https://doi.org/10.1016/j.jallcom.2015.04.073
  9. R. Guo, X. Wang, Y. Kuang, B. Huang, Phys. Rev. B 92 (2015) 115202. https://doi.org/10.1103/PhysRevB.92.115202
  10. A.J. Hong, L. Li, H.X. Zhu, Z.B. Yan, J.M. Liu, Z.F. Ren, J. Mater. Chem. A 3 (2015) 13365-13370. https://doi.org/10.1039/C5TA01703C
  11. K. Kutorasinski, B. Wiendlocha, S. Kaprzyk, J. Tobola, Phys. Rev. B 91 (2015) 205201. https://doi.org/10.1103/PhysRevB.91.205201
  12. G. Shi, E. Kioupakis, J. Appl. Phys. 117 (2015) 065103. https://doi.org/10.1063/1.4907805
  13. Y. Suzuki, H. Nakamura, Phys. Chem. Chem. Phys. 17 (2015) 29647-29654. https://doi.org/10.1039/C5CP05151G
  14. K. Tyagi, B. Gahtori, S. Bathula, N.K. Singh, S. Bishnoi, S. Auluck, A.K. Srivastava, A. Dhar, RSC Adv. 6 (2016) 11562-11569. https://doi.org/10.1039/C5RA23742D
  15. J. Yang, G. Zhang, G. Yang, C. Wang, Y.X. Wang, J. Alloys Compd. 644 (2015) 615-620. https://doi.org/10.1016/j.jallcom.2015.04.175
  16. L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, Science 351 (2016) 141-144. https://doi.org/10.1126/science.aad3749
  17. K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. Zhou, Energy Environ. Sci. 9 (2016) 454-460. https://doi.org/10.1039/C5EE03366G
  18. S. Sassi, C. Candolfi, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, B. Lenoir, Appl. Phys. Lett. 104 (2014) 212105. https://doi.org/10.1063/1.4880817
  19. Y. Li, X. Shi, D. Ren, J. Chen, L. Chen, Energies 8 (2015) 6275-6285. https://doi.org/10.3390/en8076275
  20. C.-L. Chen, H. Wang, Y.-Y. Chen, T. Day, G.J. Snyder, J. Mater. Chem. A 2 (2014) 11171-11176. https://doi.org/10.1039/C4TA01643B
  21. H. Leng, M. Zhou, J. Zhao, Y. Han, L. Li, J. Electron. Mater. 45 (2015) 527-534.
  22. E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, Z. Ren, J. Mater. Chem. A 4 (2016) 1848-1854. https://doi.org/10.1039/C5TA08847J
  23. H.-Q. Leng, M. Zhou, J. Zhao, Y.-M. Han, L.-F. Li, RSC Adv. 6 (2016) 9112-9116. https://doi.org/10.1039/C5RA19469E
  24. Q. Zhang, E.K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z. Ren, Adv. Energy Mater. 5 (2015) 1500360. https://doi.org/10.1002/aenm.201500360
  25. C.-C. Lin, R. Lydia, J.H. Yun, H.S. Lee, J.-S. Rhyee, Chem. Mater. 29 (2017) 5344-5352. https://doi.org/10.1021/acs.chemmater.7b01612
  26. D. Ginting, C.-C. Lin, L. Rathnam, B.-K. Yu, S.-J. Kim, R. Al rahal Al Orabi, J.- S. Rhyee, RSC Adv. 6 (2017) 62958-62967.
  27. Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, Z. Ren, J. Am. Chem. Soc. 134 (2012) 10031-10038. https://doi.org/10.1021/ja301245b
  28. Y. Li, B. He, J.P. Heremans, J.-C. Zhao, J. Alloys Compd. 669 (2016) 224-231. https://doi.org/10.1016/j.jallcom.2016.01.258
  29. A.F. May, G.J. Snyder, Introduction to Modeling Thermoelectric Transport at High Temperatures, Materials, Preparation, and Characterization in Thermoelectrics, CRC Press, New York, 2012, pp. 1-18.

Cited by

  1. Pressure-induced enhancement of thermoelectric power factor in pristine and hole-doped SnSe crystals vol.9, pp.46, 2018, https://doi.org/10.1039/c9ra05134a
  2. High‐Performance Thermoelectric SnSe: Aqueous Synthesis, Innovations, and Challenges vol.7, pp.7, 2020, https://doi.org/10.1002/advs.201902923
  3. As-doped SnSe single crystals: Ambivalent doping and interaction with intrinsic defects vol.103, pp.8, 2018, https://doi.org/10.1103/physrevb.103.085203
  4. High ZT Value of Pure SnSe Polycrystalline Materials Prepared by High-Energy Ball Milling plus Hot Pressing Sintering vol.13, pp.36, 2018, https://doi.org/10.1021/acsami.1c09208