DOI QR코드

DOI QR Code

First-principles study of dissociation processes of O2 molecular on the Al (111) surface

  • Sun, Shiyang (The State Key Lab of Metal Matrix Composition, Shanghai Jiao Tong University) ;
  • Xu, Pingping (School of Mechanical Engineering, Inner Mongolia University of Science & Technology) ;
  • Ren, Yuan (School of Mechanical Engineering, Inner Mongolia University of Science & Technology) ;
  • Tan, Xin (School of Mechanical Engineering, Inner Mongolia University of Science & Technology) ;
  • Li, Geyang (The State Key Lab of Metal Matrix Composition, Shanghai Jiao Tong University)
  • Received : 2018.04.21
  • Accepted : 2018.09.18
  • Published : 2018.12.31

Abstract

The trajectories of adsorption and dissociation process of $O_2$ on the Al (111) surface were studied by the spinpolarized ab initio molecular dynamics method, and the adsorption activation energy was clarified by the NEB method with hybrid functionals. Three typical dissociation trajectories were found through simulation of $O_2$ molecule at different initial positions. When vertically approaches to the Al surface, the $O_2$ molecule tends to rotate, and the activation energy is 0.66eV. If $O_2$ molecule does not rotate, the activation energy will increase to 1.43 eV, and it makes the O atom enter the Al sublayer eventually. When the $O_2$ molecules parallel approach to the Al surface, there is no activation energy, due to the huge energy released during the adsorption process.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, National Natural Science Foundation of the Inner Mongolia Autonomous Region

References

  1. J.X. Guo, L.J. Wei, D.Y. Ge, L. Guan, Y.L. Wang, B.T. Liu, Appl. Surf. Sci. 264 (2013) 247-254. https://doi.org/10.1016/j.apsusc.2012.10.010
  2. H. Brune, J. Wintterlin, J. Trost, G. Ertl, J. Chem. Phys. 99 (3) (1993) 2128-2148. https://doi.org/10.1063/1.465278
  3. L. Osterlund, I. Zoric-Acute, B. Kasemo, Phys. Rev. B 55 (1997) 15452. https://doi.org/10.1103/PhysRevB.55.15452
  4. M. Schmid, G. Leonardelli, R. TschelieBnig, A. Biedermann, P. Varga, Surf. Sci. 478 (3) (2001) 355-362. https://doi.org/10.1016/S0039-6028(01)00967-0
  5. M. Binetti, E. Hasselbrink, J. Phys. Chem. B 108 (38) (2004) 14677-14684. https://doi.org/10.1021/jp049197y
  6. K. Honkala, K. Laasonen, Phys. Rev. Lett. 84 (4) (2000) 705. https://doi.org/10.1103/PhysRevLett.84.705
  7. T. Sasaki, T. Ohno, Surf. Sci. 454 (2000) 337-340.
  8. Y. Yourdshahyan, B. Razaznejad, B.I. Lundqvist, Phys. Rev. B 65 (2002) 075416. https://doi.org/10.1103/PhysRevB.65.075416
  9. J. Behler, B. Delley, S. Lorenz, K. Reuter, M. Scheffler, Phys. Rev. Lett. 94 (2005) 036104. https://doi.org/10.1103/PhysRevLett.94.036104
  10. J. Behler, K. Reuter, M. Scheffler, Nonadiabatic. Phys. Rev. B 77 (2008) 115421. https://doi.org/10.1103/PhysRevB.77.115421
  11. C. Carbogno, J. Behler, K. Reuter, A. Grob, Phys. Rev. B 81 (2010) 035410. https://doi.org/10.1103/PhysRevB.81.035410
  12. H.R. Liu, H. Xiang, X.G. Gong, J. Chem. Phys. 135 (2011) 214702. https://doi.org/10.1063/1.3665032
  13. F. Libisch, C. Huang, P. Liao, M. Pavone, E.A. Carter, Phys. Rev. Lett. 109 (2012) 198303. https://doi.org/10.1103/PhysRevLett.109.198303
  14. A.J. Komrowski, J.Z. Sexton, A.C. Kummel, M. Binetti, O. Weibe, E. Hasselbrink, Phys. Rev. Lett. 87 (2001) 246103. https://doi.org/10.1103/PhysRevLett.87.246103
  15. L.C. Ciacchi, M.C. Payne, Phys. Rev. Lett. 92 (2004) 176104. https://doi.org/10.1103/PhysRevLett.92.176104
  16. L.C. Ciacchi, Int. J. Mater. Res. 98 (8) (2007) 708-716. https://doi.org/10.3139/146.101532
  17. J. Cheng, F. Libisch, E.A. Carter, J. Phys. Chem. Lett. 6 (2015) 1661-1665. https://doi.org/10.1021/acs.jpclett.5b00597
  18. K. Shimizu, D.W. Agerico, H. Kasai, J. Phys. Soc. Jpn. 82 (2013) 113602. https://doi.org/10.7566/JPSJ.82.113602
  19. S.P. Rittmeyer, V.J. Bukas, K. Reuter, Adv. Phys. X 3 (1) (2018) 1381574.
  20. C. Lanthony, J.M. Ducere, M.D. Rouhani, A. Hemeryck, A. Esteve, C. Rossi, J. Chem. Phys. 137 (2012) 094707. https://doi.org/10.1063/1.4746943
  21. G. Kresse, J. Furthmuller, Phys. Rev. B Condens. Matter 54 (1996) 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
  22. P.E. Blochl, Phys. Rev. B 50 (1994) 17953. https://doi.org/10.1103/PhysRevB.50.17953
  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  24. J. Heyd, G.E. Scuseria, J. Chem. Phys. 121 (2004) 1187. https://doi.org/10.1063/1.1760074
  25. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124 (2006) 219906. https://doi.org/10.1063/1.2204597
  26. M. Methfessel, A.T. Paxton, Phys. Rev. B 40 (1989) 3616. https://doi.org/10.1103/PhysRevB.40.3616
  27. S. Nose, J. Chem. Phys. 81 (1984) 511. https://doi.org/10.1063/1.447334
  28. D. Sheppard, P. Xiao, W. Chemelewski, D.D. Johnson, G. Henkelman, A generalized, J. Chem. Phys. 136 (2012) 074103. https://doi.org/10.1063/1.3684549
  29. G. Herzberg, Can. J. Phys. 30 (1952) 185. https://doi.org/10.1139/p52-019
  30. H.R. Liu, H.J. Xiang, X.G. Gong, J. Chem. Phys. 135 (21) (2011) 15452.
  31. X. Wei, C. Dong, Zh Chen, K. Xiao, X.G. Li, RSC Adv. 6 (2016) 56303-56312. https://doi.org/10.1039/C6RA08958E
  32. M. Guiltat, M. Brut, S. Vizzini, A. Hemeryck, Surf. Sci. 657 (2017) 79-89. https://doi.org/10.1016/j.susc.2016.11.010
  33. M. Kurahashi, Y. Yamauchi, Phys. Rev. Lett. 110 (2013) 246102. https://doi.org/10.1103/PhysRevLett.110.246102

Cited by

  1. Closing the Gap Between Experiment and Theory: Reactive Scattering of HCl from Au(111) vol.124, pp.29, 2018, https://doi.org/10.1021/acs.jpcc.0c03756