DOI QR코드

DOI QR Code

Silyl-group functionalized organic additive for high voltage Ni-rich cathode material

  • Jang, Seol Heui (Department of Chemistry, Incheon National University) ;
  • Jung, Kwangeun (Department of Chemistry, Incheon National University) ;
  • Yim, Taeeun (Department of Chemistry, Incheon National University)
  • Received : 2018.02.27
  • Accepted : 2018.07.16
  • Published : 2018.11.30

Abstract

To allow stable cycling of layered nickel-rich cathode material at high voltage, silyl-functionalized dimethoxydimethylsilane is proposed as a multi-functional additive. In contrast to typical functional additive, dimethoxydimethylsilane does not make artificial cathode-electrolyte interfaces by electrochemical oxidation because it is quite stable under anodic polarization. We find that dimethoxydimethylsilane mainly focuses on scavenging nucleophilic fluoride species that can be produced by electrolyte decomposition during cycling, leading to improving interfacial stability of both nickel-rich cathode and graphite anode. As a result, the cell cycled with dimethoxydimethylsilane-controlled electrolyte exhibits 65.7% of retention after 100 cycle, which is identified by systematic spectroscopic analyses for the cycled cell.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future, Energy Environ. Sci. 4 (2011) 3287-3295. https://doi.org/10.1039/c1ee01388b
  2. A. Yoshino, The birth of the lithium-ion battery, Angew. Chem. Int. Ed. 51 (2012) 5798-5800. https://doi.org/10.1002/anie.201105006
  3. J.W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Sources 195 (2010) 939-954. https://doi.org/10.1016/j.jpowsour.2009.08.089
  4. Y. Nishi, Lithium ion secondary batteries; past 10 years and the future, J. Power Sources 100 (2001) 101-106. https://doi.org/10.1016/S0378-7753(01)00887-4
  5. M. Armand, J.-M. Tarascon, Building better batteries, Nature 451 (2008) 652-657. https://doi.org/10.1038/451652a
  6. A. Manthiram, J.C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives, Adv. Energy Mater. 6 (2016) 1501010. https://doi.org/10.1002/aenm.201501010
  7. T. Yim, K.S. Kang, J. Mun, S.H. Lim, S.-G. Woo, K.J. Kim, M.-S. Park, W. Cho, J.H. Song, Y.-K. Han, J.-S. Yu, Y.-J. Kim, Understanding the effects of a multifunctionalized additive on the cathode-electrolyte interfacial stability of Ni-rich materials, J. Power Sources 302 (2016) 431-438. https://doi.org/10.1016/j.jpowsour.2015.10.051
  8. J. Li, L.E. Downie, L. Ma, W. Qiu, J.R. Dahn, Study of the failure mechanisms of $LiNi_{0.8}Mn_{0.1}Co_{0.1}O_2$ cathode material for lithium ion batteries, J. Electrochem. Soc. 162 (2015) A1401-A1408. https://doi.org/10.1149/2.1011507jes
  9. S.-K. Jung, H. Gwon, J. Hong, K.-Y. Park, D.-H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Understanding the degradation mechanisms of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material in lithium ion batteries, Adv. Energy Mater. 4 (2014) 1300787. https://doi.org/10.1002/aenm.201300787
  10. M. He, C.-C. Su, C. Peebles, Z. Feng, J.G. Connell, C. Liao, Y. Wang, I.A. Shkrob, Z. Zhang, Mechanistic insight in the function of phosphite additives for protection of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode in high voltage Li-Ion cells, ACS Appl. Mater. Interfaces 8 (2016) 11450-11458. https://doi.org/10.1021/acsami.6b01544
  11. W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho, S. Chae, Y. Kim, J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed. 54 (2015) 4440-4457. https://doi.org/10.1002/anie.201409262
  12. C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-ion batteries, Inorganics 2 (2014) 132-154. https://doi.org/10.3390/inorganics2010132
  13. Y. Koyama, H. Arai, I. Tanaka, Y. Uchimoto, Z. Ogumi, Defect chemistry in layered LiMO2 (M = Co, Ni, Mn, and $Li_{1/3}Mn_{2/3}$) by first-prinsiples calculations, Chem. Mater. 24 (2012) 3886-3894. https://doi.org/10.1021/cm3018314
  14. H.J. Yu, Y.M. Qian, M.R. Otani, D.M. Tang, S.H. Guo, Y.B. Zhu, H.S. Zhou, Study of the lithium/nickel ions exchange in the layered $LiNi_{0.42}Mn_{0.42}Co_{0.16}O_2$ cathode material for lithium ion batteries: experimental and first-principles calculations, Energy Environ. Sci. 7 (2014) 1068-1078. https://doi.org/10.1039/c3ee42398k
  15. H. Zheng, Q. Sun, G. Liu, X. Song, V.S. Battaglia, Correlation between dissolution behaviour and electrochemical cycling performance for $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$-based cells, J. Power Sources 207 (2012) 134-140. https://doi.org/10.1016/j.jpowsour.2012.01.122
  16. C. Liang, F. Kong, R.C. Longo, S. KC, J.-S. Kim, S. Jeon, S. Choi, K. Cho, Unraveling the origin of instability in Ni-Rich $LiNi_{1-2X}Co_XMn_XO_2$ (NCM) cathode materials, J. Phys. Chem. C 120 (2016) 6383-6393.
  17. K.S. Kang, S. Choi, J. Song, S.-G. Woo, Y.N. Jo, J. Choi, T. Yim, J.-S. Yu, Y.-J. Kim, Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature, J. Power Sources 253 (2014) 48-54. https://doi.org/10.1016/j.jpowsour.2013.12.024
  18. S.K. Martha, J. Nanda, G.M. Veith, N.J. Dudney, Electrochemical and rate performance study of high-voltage lithium-rich composition: $Li_{1.2}Mn_{0.525}Ni_{0.175}Co_{0.1}O_2$, J. Power Sources 199 (2012) 220. https://doi.org/10.1016/j.jpowsour.2011.10.019
  19. T. Kawamura, A. Kimura, M. Egashira, S. Okada, J.-I. Yamaki, Thermal stability of alkyl carbonate mixed-solvent electrolyte for lithium ion cells, J. Power Sources 104 (2002) 260-264. https://doi.org/10.1016/S0378-7753(01)00960-0
  20. Y. Okamoto, Ab inition calculations of thermal decomposition mechanism of LiPF6- based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 160 (2013) A404-A409. https://doi.org/10.1149/2.020303jes
  21. D. Aurbach, A. Zaban, Y. Ein-Eli, I. Weissman, O. Chusid, B. Markovsky, M. Levi, E. Levi, A. Schechter, E. Granot, Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems, J. Power Sources 68 (1997) 91-98. https://doi.org/10.1016/S0378-7753(97)02575-5
  22. S.F. Lux, I.T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, The mechanism of HF formation in $LiPF_6$ based organic carbonate electrolytes, Electrochem. Commun. 14 (2012) 47-50. https://doi.org/10.1016/j.elecom.2011.10.026
  23. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci. 4 (2011) 3243-3262. https://doi.org/10.1039/c1ee01598b
  24. C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, H.Q. Wu, Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta 51 (2006) 3872-3883. https://doi.org/10.1016/j.electacta.2005.11.015
  25. T. Joshi, K.S. Eom, G. Yushin, T.F. Fuller, Effect of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries, J. Electrochem. Soc. 161 (2014) A1915-A1921. https://doi.org/10.1149/2.0861412jes
  26. S.J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, D.L. Wood, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon 105 (2016) 52-76. https://doi.org/10.1016/j.carbon.2016.04.008
  27. H. Ota, Y. Sakata, A. Inoue, S. Yamaguchi, Analysis of vinylene carbonate derived SEI layers on graphite anode, J. Electrochem. Soc. 151 (2004) A1659-A1669. https://doi.org/10.1149/1.1785795
  28. P. Murray-Rust, J.P. Glusker, Directional hydrogen bonding to sp2- and sp3-hybridized oxygen atoms and its relevance to ligand-macromolecule interactions, J. Am. Chem. Soc. 106 (1984) 1018-1025. https://doi.org/10.1021/ja00316a034
  29. Carey, A. Francis, Richard J. Sundberg, Advanced Organic Chemistry Part A: Structure and Mechanisms, fifth ed., Springer, Germany, 2006.
  30. S.H. Jang, T. Yim, Effect of silyl ether-functionalized dimethoxydimethylsilane on electrochemical performance of Ni-rich NCM cathode, ChemPhysChem 18 (2017) 3402-3406. https://doi.org/10.1002/cphc.201700921
  31. A.S. Pilcher, H.L. Ammon, P. DeShong, Utilization of tetrabutylammonium (Triphenylsilyl)Difluorosilicate as a fluoride source for nucleophilic fluorination, J. Am. Chem. Soc. 117 (1995) 5166-5167. https://doi.org/10.1021/ja00123a025
  32. R.K. Sharma, J.L. Fry, Instability of anhydrous tetra-normal-alkylammonium fluorides, J. Org. Chem. 48 (1983) 2112-2114. https://doi.org/10.1021/jo00160a041
  33. J.W. Emsley, J. Feeney, L.H. Sutcliffe, High Resolution Nuclear Magnetic Resonance Spectroscopy, 2th ed., Pergamon Press, London, 1968.
  34. B.K. Hunter, L.W. Reeves, Chemical shifts for compounds of the group IV elements silicon and tin, Can. J. Chem. 46 (1968) 1399-1414. https://doi.org/10.1139/v68-229
  35. S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, J. Power Sources 162 (2006) 1379-1394. https://doi.org/10.1016/j.jpowsour.2006.07.074
  36. C.L. Campion, W. Li, B.L. Lucht, Thermal decomposition of $LiPF_6$-based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 152 (2005) A2327-A2334. https://doi.org/10.1149/1.2083267
  37. H. Yang, G.V. Zhuang, P.N. Ross, Thermal stability of $LiPF_6$ salt and Li-ion battery electrolytes containing $LiPF_6$, J. Power Sources 161 (2006) 573-579. https://doi.org/10.1016/j.jpowsour.2006.03.058
  38. T. Kawamura, S. Okada, J.-I. Yamaki, Decomposition reaction of $LiPF_6$-based electrolytes for lithium ion cells, J. Power Sources 156 (2006) 547-554. https://doi.org/10.1016/j.jpowsour.2005.05.084
  39. M. Xu, W. Li, B.L. Lucht, Effect of propane sultone on elevated temperature performance of anode and cathode materials in lithium-ion batteries, J. Power Sources 193 (2009) 804-809. https://doi.org/10.1016/j.jpowsour.2009.03.067
  40. C. Peebles, R. Sahore, J.A. Gilbert, J.C. Garcia, A. Tornheim, J. Bareno, H. Iddir, C. Liao, D.P. Abraham, Tris (trimethylsilyl) phosphite (TMSPi) and triethyl phosphite (TEPi) as electrolyte additives for lithium ion batteries: mechanistic insights into differences during $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$-graphite full cell cycling, J. Electrochem. Soc. 164 (2017) A1579-A1586. https://doi.org/10.1149/2.1101707jes
  41. X. Wang, X. Zheng, Y. Liao, Q. Huang, L. Xing, M. Xu, W. Li, Maintaining structural integrity of 4.5V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive, J. Power Sources 15 (2017) 108-116.
  42. L. Yang, B.L. Lucht, Inhibition of electrolyte oxidation in lithium ion batteries with electrolyte additives, Electrochem. Solid State Lett. 12 (2009) A229-A231. https://doi.org/10.1149/1.3238486
  43. D. Ensling, M. Stjerndahl, A. Nyten, T. Gustafsson, J.O. Thomas, A comparative XPS surface study of $Li_2FeSiO_4$/C cycled with LiTFSI-and $LiPF_6$-based electrolytes, J. Mater. Chem. 19 (2009) 82-88. https://doi.org/10.1039/B813099J
  44. K. Edstrom, T. Gustafsson, J.O. Thomas, The cathode-electrolyte interface in a Liion battery, Electrochim. Acta 50 (2004) 397-403. https://doi.org/10.1016/j.electacta.2004.03.049
  45. D. Bar-Tow, E. Peled, L. Burstein, A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-Ion batteries, J. Electrochem. Soc. 146 (1999) 824-832. https://doi.org/10.1149/1.1391688
  46. K. Kanamura, H. Tamura, Z.-I. Takehara, XPS analysis of a lithium surface immersed in propylene carbonate solution containing various salts, J. Electroanal. Chem. 333 (1992) 127-142. https://doi.org/10.1016/0022-0728(92)80386-I
  47. J.-Y. Eom, I.-H. Jung, J.-H. Lee, Effects of vinylene carbonate on high temperature storage of high voltage Li-ion batteries, J. Power Sources 196 (2011) 9810-9814. https://doi.org/10.1016/j.jpowsour.2011.06.095
  48. B. Markovsky, A. Rodkin, G. Salitra, Y. Talyosef, D. Aurbach, H.-J. Kim, The impact of $Co^{2+}$ ions in solutions on the performance of $LiCoO_2$, Li, and lithiated graphite electrodes, J. Electrochem. Soc. 151 (2004) A1068-A1076. https://doi.org/10.1149/1.1759697
  49. S. Komaba, N. Kumagai, Y. Kataoka, Influence of manganese (II), cobalt (II), and nickel (II) additives in electrolyte on performance of graphite anode for lithium-ion batteries, Electrochim. Acta 47 (2002) 1229-1239. https://doi.org/10.1016/S0013-4686(01)00847-7

Cited by

  1. Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook vol.7, pp.15, 2018, https://doi.org/10.1039/c9ta00126c
  2. Electrolyte-Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges vol.5, pp.None, 2018, https://doi.org/10.1021/acsenergylett.0c00468
  3. Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries vol.6, pp.1, 2018, https://doi.org/10.3390/batteries6010008
  4. A Review of Lithium-Ion Battery Fire Suppression vol.13, pp.19, 2018, https://doi.org/10.3390/en13195117
  5. Surface‐Modified Ni‐Rich Layered Oxide Cathode Via Thermal Treatment of Poly(Vinylidene Fluoride) for Lithium‐Ion Batteries vol.41, pp.11, 2020, https://doi.org/10.1002/bkcs.12118
  6. Ni‐Rich Layered Cathode Materials by a Mechanochemical Method for High‐Energy Lithium‐Ion Batteries vol.5, pp.46, 2018, https://doi.org/10.1002/slct.202003884
  7. A Novel Electrolyte Additive Enables High-Voltage Operation of Nickel-Rich Oxide/Graphite Cells vol.12, pp.None, 2018, https://doi.org/10.1021/acs.jpclett.1c00803
  8. Triphenyl phosphate as an Efficient Electrolyte Additive for Ni-rich NCM Cathode Materials vol.12, pp.1, 2021, https://doi.org/10.33961/jecst.2020.00850
  9. Lithium Bis(trimethylsilyl) Phosphate as a Novel Bifunctional Additive for High-Voltage LiNi1.5Mn0.5O4/Graphite Lithium-Ion Batteries vol.13, pp.19, 2018, https://doi.org/10.1021/acsami.1c02572
  10. High-voltage liquid electrolytes for Li batteries: progress and perspectives vol.50, pp.18, 2018, https://doi.org/10.1039/d1cs00450f
  11. A Review of Degradation Mechanisms and Recent Achievements for Ni‐Rich Cathode‐Based Li‐Ion Batteries vol.11, pp.48, 2018, https://doi.org/10.1002/aenm.202103005
  12. A review of nickel-rich layered oxide cathodes: synthetic strategies, structural characteristics, failure mechanism, improvement approaches and prospects vol.305, pp.None, 2018, https://doi.org/10.1016/j.apenergy.2021.117849