DOI QR코드

DOI QR Code

Structure and magnetic properties of CrN thin films on La0.67Sr0.33MnO3

  • Zhang, Dingbo (Henan Key Laboratory of Photovoltaic Materials, School of Physics and Materials Science, Henan Normal University) ;
  • Zhou, Zhongpo (Henan Key Laboratory of Photovoltaic Materials, School of Physics and Materials Science, Henan Normal University) ;
  • Wang, Haiying (Henan Key Laboratory of Photovoltaic Materials, School of Physics and Materials Science, Henan Normal University) ;
  • Wang, Tianxing (Henan Key Laboratory of Photovoltaic Materials, School of Physics and Materials Science, Henan Normal University) ;
  • Lu, Zhansheng (Henan Key Laboratory of Photovoltaic Materials, School of Physics and Materials Science, Henan Normal University) ;
  • Yang, Zongxian (Henan Key Laboratory of Photovoltaic Materials, School of Physics and Materials Science, Henan Normal University) ;
  • Ai, Zhiwei (Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University) ;
  • Wu, Hao (Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University) ;
  • Liu, Chang (Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University)
  • Received : 2018.03.15
  • Accepted : 2018.07.13
  • Published : 2018.11.30

Abstract

High crystalline quality CrN thin films have been grown on $La_{0.67}Sr_{0.33}MnO_3$ (LSMO) templates by molecular beam epitaxy. The structure and magnetic properties of CrN/LSMO heterojunctions are investigated combining with the experiments and the first-principles simulation. The N?el temperature of the CrN/LSMO samples is found to be 281 K and the saturation magnetization of CrN/LSMO increases compared to that of LSMO templates. The magnetic property of CrN/LSMO heterostructures mainly comes from Cr atoms of (001) CrN and Mn atoms of (001) LSMO. The (001) LSMO induces and couples the spin of the CrN sublattice at CrN/LSMO interface.

Keywords

Acknowledgement

Supported by : NSFC, Henan Normal University, China Scholarship Council

References

  1. F.T. Parker, Kentaro Takano, A.E. Berkowitz, Exchange coupling mechanisms at ferromagnetic/CoO interfaces, Phys. Rev. B 61 (2000) R866(R). https://doi.org/10.1103/PhysRevB.61.R866
  2. I. Sugiyama, N. Shibata, Z. Wang, S. Kobayashi, T. Yamamoto, Y. Ikuhara, Ferromagnetic dislocations in antiferromagnetic NiO, Nat. Nanotechnol. 8 (2013) 266-270. https://doi.org/10.1038/nnano.2013.45
  3. A. Filippetti, W.E. Pickett, B.M. Klein, Competition between magnetic and structural transitions in CrN, Phys. Rev. B 59 (1999) 7043. https://doi.org/10.1103/PhysRevB.59.7043
  4. J.D. Browne, P.R. Liddell, R. Street, T. Mills, An investigation of the antiferromagnetic transition of CrN, Phys. State Solidi (A) 1 (1970) 715. https://doi.org/10.1002/pssa.19700010411
  5. L.M. Corliss, N. Elliott, J.M. Hastings, Antiferromagnetic structure of CrN, Phys. Rev. 117 (1960) 929. https://doi.org/10.1103/PhysRev.117.929
  6. X.Y. Zhang, J.S. Chawla, R.P. Deng, D. Gall, Epitaxial suppression of the metalinsulator transition in CrN, Phys. Rev. B 84 (2011) 073101. https://doi.org/10.1103/PhysRevB.84.073101
  7. S. M Wang, X. H Yu, J.Z. Zhang, M. Chen, J.L. Zhu, L. P Wang, D.W. He, Z.J. Lin, R. F Zhang, Kurt Leinenweber, Y.S. Zhao, Experimental invalidation of phasetransition- induced elastic softening in CrN, Phys. Rev. B 86 (2012) 064111. https://doi.org/10.1103/PhysRevB.86.064111
  8. A. Filippetti, N.A. Hill, Magnetic stress as a driving force of structural distortions: the case of CrN, Phys. Rev. Lett. 85 (24) (2000) 5166. https://doi.org/10.1103/PhysRevLett.85.5166
  9. C. Constantin, M.B. Haider, D. Ingram, A.R. Smith, Metal/semiconductor phase transition in chromium nitride (001) grown by rf-plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett. 85 (6371) (2004) 6371. https://doi.org/10.1063/1.1836878
  10. A. Ney, R. Rajaram, S.S.P. Parkin, T. Kammermeier, S. Dhar, Magnetic properties of epitaxial CrN films, Appl. Phys. Lett. 89 (112504) (2006) 112504. https://doi.org/10.1063/1.2352795
  11. A. Herwadkar, W.R.L. Lambrecht, Electronic structure of CrN: a borderline Mott insulator, Phys. Rev. B 79 (3) (2009) 035125. https://doi.org/10.1103/PhysRevB.79.035125
  12. P.A. Bhobe, A. Chainani, M. Taguchi, T. Takeuchi, R. Eguchi, M. Matsunami, K. Ishizaka, Y. Takata, M. Oura, Y. Senba, H. Ohashi, Y. Nishino, M. Yabashi, K. Tamasaku, T. Ishikawa, K. Takenaka, H. Takagi, S. Shin, Evidence for a correlated insulator to antiferromagnetic metal transition in CrN, Phys. Rev. Lett. 104 (23) (2010) 236404. https://doi.org/10.1103/PhysRevLett.104.236404
  13. E. Dagotto, T. Hotta, A. MOREO, Colossal magnetoresistant materials: the key role of phase separation, Phys. Rep. 344 (1-3) (2001) 1. https://doi.org/10.1016/S0370-1573(00)00121-6
  14. M.B. Salamon, M. Jaime, The physics of manganites: structure and transport, Rev. Mod. Phys. 73 (3) (2001) 583. https://doi.org/10.1103/RevModPhys.73.583
  15. A.-M. Haghiri-Gosnet, J.-P. Renard, CMR manganites: physics, thin films and devices, J. Phys. Appl. Phys. 36 (8) (2003) R127. https://doi.org/10.1088/0022-3727/36/8/201
  16. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulatormetal transition and giant magnetoresistance in La1-xSrxMnO3, Phys. Rev. B 51 (20) (1995) 14103. https://doi.org/10.1103/PhysRevB.51.14103
  17. Evgenia A. Kovaleva, Alexander A. Kuzubov, Pavel V. Avramov, Anastasia S. Kholtobina, Artem V. Kuklin, Felix N. Tomilin, Pavel B. Sorokin, A key role of tensile strain and surface termination in formation and properties of $La_{0.7}Sr_{0.3}MnO_3$ composites with carbon nanotubes, Comput. Mater. Sci. (2017) 125-131.
  18. B. Alling, Theory of the ferromagnetism in Ti1-xCrxN solid solutions, Phys. Rev. B 82 (2010) 054408. https://doi.org/10.1103/PhysRevB.82.054408
  19. P.E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953. https://doi.org/10.1103/PhysRevB.50.17953
  20. G. Sun, J. Kurti, P. Rajczyb, M. Kertesza, J. Hafnerc, G. Kresse, Performance of the Vienna ab initio simulation package (VASP) in chemical applications, J. Mol. Struct.: THEOCHEM 624 (1) (2003) 37-45. https://doi.org/10.1016/S0166-1280(02)00733-9
  21. John P. Perdew, Kieron Burke, Matthias Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  22. D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (1980) 566. https://doi.org/10.1103/PhysRevLett.45.566
  23. V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: hubbard U instead of stoner, Phys. Rev. B 44 (1991) 943. https://doi.org/10.1103/PhysRevB.44.943
  24. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electronenergy- loss spectra and the structural stability of nickel oxide: an LSDA+U study, Phys. Rev. B 57 (1998) 1505. https://doi.org/10.1103/PhysRevB.57.1505
  25. Nina Shulumba, Bjorn Alling, Olle Hellman, Elham Mozafari, Steneteg Peter, Magnus Oden, Igor A. Abrikosov, Vibrational free energy and phase stability of paramagnetic and antiferromagnetic CrN from ab initio molecular dynamics, Phys. Rev. B 89 (2014) 174108. https://doi.org/10.1103/PhysRevB.89.174108
  26. A. Lindmaa, R. Lizarraga, E. Holmstrom, I.A. Abrikosov, B. Alling, Exchange interactions in paramagnetic amorphous and disordered crystalline CrN-based systems, Phys. Rev. B 88 (2013) 054414. https://doi.org/10.1103/PhysRevB.88.054414
  27. Steneteg Peter, Bjorn Alling, Igor A. Abrikosov, Equation of state of paramagnetic CrN from ab initio molecular dynamics, Phys. Rev. B 85 (2012) 144404. https://doi.org/10.1103/PhysRevB.85.144404
  28. B. Alling, L. Hultberg, L. Hultman, I.A. Abrikosov, Strong electron correlations stabilize paramagnetic cubic $Cr_{1-x}Al_xN$ solid solutions, Appl. Phys. Lett. 102 (2013) 031910. https://doi.org/10.1063/1.4788747
  29. Shanmin Wang, Xiaohui Yu, Jianzhong Zhang, Liping Wang, Kurt Leinenweber, Duanwei He, Yusheng Zhao, Synthesis, hardness, and electronic properties of stoichiometric VN and CrN, Cryst. Growth Des. 16 (1) (2016) 351-358. https://doi.org/10.1021/acs.cgd.5b01312
  30. M. Chen, S.M. Wang, J.Z. Zhang, D.W. He, Y.S. Zhao, Synthesis of stoichiometric and bulk CrN through a solid-state ion-exchange reaction, Eur. J. 18 (2012) 15459. https://doi.org/10.1002/chem.201202197
  31. T. Elangovan, R.P. George, P. Kuppusami, D. Mangalaraj, S. Bera, E. Mohandas, D.E. Kim, Development of a CrN/Cu nanocomposite coating on titanium-modified stainless steel for antibacterial activity against Pseudomonas aeruginosa, Biofouling: J. Bioadhesion Biofilm Res. 28 (2012) 779-787. https://doi.org/10.1080/08927014.2012.710605
  32. Z. Zhou, S. Luo, Y. Wang, Z. Ai, C. Liu, D. Wang, Y. Lee, Room temperature ferromagnetism and hopping transport in amorphous CrN thin films, Thin Solid Films 519 (6) (2011) 1989-1992. https://doi.org/10.1016/j.tsf.2010.10.070
  33. M. Oku, K. Hirokawa, J. Electr, X-ray photoelectron spectroscopy of $Co_3O_4$, $Fe_3O_4$, $Mn_3O_4$, and related compounds, Spectrosc. Relat. Phenom. 8 (5) (1976) 475. https://doi.org/10.1016/0368-2048(76)80034-5
  34. T. Hishida, K. Ohbayashi, T. Saitoh, Hidden relationship between the electrical conductivity and the Mn 2p core-level photoemission spectra in $La_{1-x}Sr_xMnO_3$, J. Appl. Phys. 113 (2013) 043710. https://doi.org/10.1063/1.4789315
  35. H. Sharma Akkera, R. Barman, N. Kaur, N. Choudhary, D. Kaur, Exchange bias effect in NiMnSb/CrN heterostructures deposited by magnetron sputtering, J. Appl. Phys. 113 (2013) 17D723p. 1.
  36. B. Alling, T. Marten, I.A. Abrikosov, Effect of magnetic disorder and strong electron correlations on the thermodynamics of CrN, Phys. Rev. B 82 (2010) 184430. https://doi.org/10.1103/PhysRevB.82.184430
  37. S.S. Rao, J.T. Prater, F. Wu, C.T. Shelton, J.P. Maria, J. Narayan, Interface magnetism in epitaxial $BiFeO_{3-}La_{0.7}Sr_{0.3}MnO_3$ heterostructures integrated on Si(100), Nano Lett. 13 (12) (2013) 5814-5821. https://doi.org/10.1021/nl4023435
  38. M. Izumi, Y. Ogimoto, Y. Okimoto, T. Manako, P. Ahmet, K. Nakajima, T. Chikyow, M. Kawasaki, Y. Tokura, Insulator-metal transition induced by interlayer coupling in $La_{0.6}Sr_{0.4}MnO_3/SrTiO_3$ superlattices, Phys. Rev. B 64 (2001) 064429. https://doi.org/10.1103/PhysRevB.64.064429