Acknowledgement
Supported by : NSFC, Henan Normal University, China Scholarship Council
References
- F.T. Parker, Kentaro Takano, A.E. Berkowitz, Exchange coupling mechanisms at ferromagnetic/CoO interfaces, Phys. Rev. B 61 (2000) R866(R). https://doi.org/10.1103/PhysRevB.61.R866
- I. Sugiyama, N. Shibata, Z. Wang, S. Kobayashi, T. Yamamoto, Y. Ikuhara, Ferromagnetic dislocations in antiferromagnetic NiO, Nat. Nanotechnol. 8 (2013) 266-270. https://doi.org/10.1038/nnano.2013.45
- A. Filippetti, W.E. Pickett, B.M. Klein, Competition between magnetic and structural transitions in CrN, Phys. Rev. B 59 (1999) 7043. https://doi.org/10.1103/PhysRevB.59.7043
- J.D. Browne, P.R. Liddell, R. Street, T. Mills, An investigation of the antiferromagnetic transition of CrN, Phys. State Solidi (A) 1 (1970) 715. https://doi.org/10.1002/pssa.19700010411
- L.M. Corliss, N. Elliott, J.M. Hastings, Antiferromagnetic structure of CrN, Phys. Rev. 117 (1960) 929. https://doi.org/10.1103/PhysRev.117.929
- X.Y. Zhang, J.S. Chawla, R.P. Deng, D. Gall, Epitaxial suppression of the metalinsulator transition in CrN, Phys. Rev. B 84 (2011) 073101. https://doi.org/10.1103/PhysRevB.84.073101
- S. M Wang, X. H Yu, J.Z. Zhang, M. Chen, J.L. Zhu, L. P Wang, D.W. He, Z.J. Lin, R. F Zhang, Kurt Leinenweber, Y.S. Zhao, Experimental invalidation of phasetransition- induced elastic softening in CrN, Phys. Rev. B 86 (2012) 064111. https://doi.org/10.1103/PhysRevB.86.064111
- A. Filippetti, N.A. Hill, Magnetic stress as a driving force of structural distortions: the case of CrN, Phys. Rev. Lett. 85 (24) (2000) 5166. https://doi.org/10.1103/PhysRevLett.85.5166
- C. Constantin, M.B. Haider, D. Ingram, A.R. Smith, Metal/semiconductor phase transition in chromium nitride (001) grown by rf-plasma-assisted molecular-beam epitaxy, Appl. Phys. Lett. 85 (6371) (2004) 6371. https://doi.org/10.1063/1.1836878
- A. Ney, R. Rajaram, S.S.P. Parkin, T. Kammermeier, S. Dhar, Magnetic properties of epitaxial CrN films, Appl. Phys. Lett. 89 (112504) (2006) 112504. https://doi.org/10.1063/1.2352795
- A. Herwadkar, W.R.L. Lambrecht, Electronic structure of CrN: a borderline Mott insulator, Phys. Rev. B 79 (3) (2009) 035125. https://doi.org/10.1103/PhysRevB.79.035125
- P.A. Bhobe, A. Chainani, M. Taguchi, T. Takeuchi, R. Eguchi, M. Matsunami, K. Ishizaka, Y. Takata, M. Oura, Y. Senba, H. Ohashi, Y. Nishino, M. Yabashi, K. Tamasaku, T. Ishikawa, K. Takenaka, H. Takagi, S. Shin, Evidence for a correlated insulator to antiferromagnetic metal transition in CrN, Phys. Rev. Lett. 104 (23) (2010) 236404. https://doi.org/10.1103/PhysRevLett.104.236404
- E. Dagotto, T. Hotta, A. MOREO, Colossal magnetoresistant materials: the key role of phase separation, Phys. Rep. 344 (1-3) (2001) 1. https://doi.org/10.1016/S0370-1573(00)00121-6
- M.B. Salamon, M. Jaime, The physics of manganites: structure and transport, Rev. Mod. Phys. 73 (3) (2001) 583. https://doi.org/10.1103/RevModPhys.73.583
- A.-M. Haghiri-Gosnet, J.-P. Renard, CMR manganites: physics, thin films and devices, J. Phys. Appl. Phys. 36 (8) (2003) R127. https://doi.org/10.1088/0022-3727/36/8/201
- A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulatormetal transition and giant magnetoresistance in La1-xSrxMnO3, Phys. Rev. B 51 (20) (1995) 14103. https://doi.org/10.1103/PhysRevB.51.14103
-
Evgenia A. Kovaleva, Alexander A. Kuzubov, Pavel V. Avramov, Anastasia S. Kholtobina, Artem V. Kuklin, Felix N. Tomilin, Pavel B. Sorokin, A key role of tensile strain and surface termination in formation and properties of
$La_{0.7}Sr_{0.3}MnO_3$ composites with carbon nanotubes, Comput. Mater. Sci. (2017) 125-131. - B. Alling, Theory of the ferromagnetism in Ti1-xCrxN solid solutions, Phys. Rev. B 82 (2010) 054408. https://doi.org/10.1103/PhysRevB.82.054408
- P.E. Blochl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953. https://doi.org/10.1103/PhysRevB.50.17953
- G. Sun, J. Kurti, P. Rajczyb, M. Kertesza, J. Hafnerc, G. Kresse, Performance of the Vienna ab initio simulation package (VASP) in chemical applications, J. Mol. Struct.: THEOCHEM 624 (1) (2003) 37-45. https://doi.org/10.1016/S0166-1280(02)00733-9
- John P. Perdew, Kieron Burke, Matthias Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
- D.M. Ceperley, B.J. Alder, Ground state of the electron gas by a stochastic method, Phys. Rev. Lett. 45 (1980) 566. https://doi.org/10.1103/PhysRevLett.45.566
- V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: hubbard U instead of stoner, Phys. Rev. B 44 (1991) 943. https://doi.org/10.1103/PhysRevB.44.943
- S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton, Electronenergy- loss spectra and the structural stability of nickel oxide: an LSDA+U study, Phys. Rev. B 57 (1998) 1505. https://doi.org/10.1103/PhysRevB.57.1505
- Nina Shulumba, Bjorn Alling, Olle Hellman, Elham Mozafari, Steneteg Peter, Magnus Oden, Igor A. Abrikosov, Vibrational free energy and phase stability of paramagnetic and antiferromagnetic CrN from ab initio molecular dynamics, Phys. Rev. B 89 (2014) 174108. https://doi.org/10.1103/PhysRevB.89.174108
- A. Lindmaa, R. Lizarraga, E. Holmstrom, I.A. Abrikosov, B. Alling, Exchange interactions in paramagnetic amorphous and disordered crystalline CrN-based systems, Phys. Rev. B 88 (2013) 054414. https://doi.org/10.1103/PhysRevB.88.054414
- Steneteg Peter, Bjorn Alling, Igor A. Abrikosov, Equation of state of paramagnetic CrN from ab initio molecular dynamics, Phys. Rev. B 85 (2012) 144404. https://doi.org/10.1103/PhysRevB.85.144404
-
B. Alling, L. Hultberg, L. Hultman, I.A. Abrikosov, Strong electron correlations stabilize paramagnetic cubic
$Cr_{1-x}Al_xN$ solid solutions, Appl. Phys. Lett. 102 (2013) 031910. https://doi.org/10.1063/1.4788747 - Shanmin Wang, Xiaohui Yu, Jianzhong Zhang, Liping Wang, Kurt Leinenweber, Duanwei He, Yusheng Zhao, Synthesis, hardness, and electronic properties of stoichiometric VN and CrN, Cryst. Growth Des. 16 (1) (2016) 351-358. https://doi.org/10.1021/acs.cgd.5b01312
- M. Chen, S.M. Wang, J.Z. Zhang, D.W. He, Y.S. Zhao, Synthesis of stoichiometric and bulk CrN through a solid-state ion-exchange reaction, Eur. J. 18 (2012) 15459. https://doi.org/10.1002/chem.201202197
- T. Elangovan, R.P. George, P. Kuppusami, D. Mangalaraj, S. Bera, E. Mohandas, D.E. Kim, Development of a CrN/Cu nanocomposite coating on titanium-modified stainless steel for antibacterial activity against Pseudomonas aeruginosa, Biofouling: J. Bioadhesion Biofilm Res. 28 (2012) 779-787. https://doi.org/10.1080/08927014.2012.710605
- Z. Zhou, S. Luo, Y. Wang, Z. Ai, C. Liu, D. Wang, Y. Lee, Room temperature ferromagnetism and hopping transport in amorphous CrN thin films, Thin Solid Films 519 (6) (2011) 1989-1992. https://doi.org/10.1016/j.tsf.2010.10.070
-
M. Oku, K. Hirokawa, J. Electr, X-ray photoelectron spectroscopy of
$Co_3O_4$ ,$Fe_3O_4$ ,$Mn_3O_4$ , and related compounds, Spectrosc. Relat. Phenom. 8 (5) (1976) 475. https://doi.org/10.1016/0368-2048(76)80034-5 -
T. Hishida, K. Ohbayashi, T. Saitoh, Hidden relationship between the electrical conductivity and the Mn 2p core-level photoemission spectra in
$La_{1-x}Sr_xMnO_3$ , J. Appl. Phys. 113 (2013) 043710. https://doi.org/10.1063/1.4789315 - H. Sharma Akkera, R. Barman, N. Kaur, N. Choudhary, D. Kaur, Exchange bias effect in NiMnSb/CrN heterostructures deposited by magnetron sputtering, J. Appl. Phys. 113 (2013) 17D723p. 1.
- B. Alling, T. Marten, I.A. Abrikosov, Effect of magnetic disorder and strong electron correlations on the thermodynamics of CrN, Phys. Rev. B 82 (2010) 184430. https://doi.org/10.1103/PhysRevB.82.184430
-
S.S. Rao, J.T. Prater, F. Wu, C.T. Shelton, J.P. Maria, J. Narayan, Interface magnetism in epitaxial
$BiFeO_{3-}La_{0.7}Sr_{0.3}MnO_3$ heterostructures integrated on Si(100), Nano Lett. 13 (12) (2013) 5814-5821. https://doi.org/10.1021/nl4023435 -
M. Izumi, Y. Ogimoto, Y. Okimoto, T. Manako, P. Ahmet, K. Nakajima, T. Chikyow, M. Kawasaki, Y. Tokura, Insulator-metal transition induced by interlayer coupling in
$La_{0.6}Sr_{0.4}MnO_3/SrTiO_3$ superlattices, Phys. Rev. B 64 (2001) 064429. https://doi.org/10.1103/PhysRevB.64.064429