DOI QR코드

DOI QR Code

Short-range magnetic order in La1-xBaxCoO3 cobaltites

  • Long, Phan The (Theoretical Physics Research Group, Advanced Institute for Materials Science, Ton Duc Thang University) ;
  • Petrov, Dimitar N. (Department of Physical Chemistry, Plovdiv University "Paisii Hilendarski") ;
  • Cwik, J. (Institute of Low Temperature and Structure Research) ;
  • Dang, N.T. (Institute of Research and Development, Duy Tan University) ;
  • Dongquoc, Viet (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2018.05.11
  • Accepted : 2018.07.04
  • Published : 2018.11.30

Abstract

Magnetization versus temperature and magnetic-field measurements, M(T, $H_a$), have been carried out to study the magnetic and critical properties of polycrystalline $La_{1-x}Ba_xCoO_3$ (x = 0.3 and 0.5) cobaltites. These compounds with the density of ${\sim}6.2g/cm^3$ crystallized in the $R{\bar{3}}c$ rhombohedral and $Pm{\bar{3}}m$ cubic structures, respectively. With an applied field $H_a=200Oe$, M(T) data have revealed that the samples with x = 0.3 and 0.5 exhibit the ferromagnetic-paramagnetic (FM-PM) phase transition at the Curie temperature points $T_C=202$ and 157 K, respectively. At 4.2 K, the saturation magnetization ($M_{sat}$) decreases from 35.9 emu/g for x = 0.3-26.1 emu/g for x = 0.5. Particularly, the critical-behavior analyses in the vicinity of $T_C$ reveal all samples undergoing a second-order phase transition, with critical exponent values (${\beta}=0.328$ and ${\gamma}=1.251$ for x = 0.3, and ${\beta}=0.331$ and ${\gamma}=1.246$ for x = 0.5) close to those expected for the 3D Ising model. This proves short-range magnetic order existing in $La_{1-x}Ba_xCoO_3$. We believe that magnetic inhomogeneities due to the mixture of hole-rich FM regions (confined in the trivalent-cobalt hole-poor anti-FM matrix) and uniaxial anisotropy prevent long-range order in $La_{1-x}Ba_xCoO_3$.

Keywords

Acknowledgement

Supported by : Ton Duc Thang University

References

  1. C.N.R. Rao, M.M. Seikh, C. Narayana, Spin Crossover in Transition Metal Compounds II, Springer-Verlag, Berlin Heidelberg New York, 2004.
  2. M.A. Senaris -Rodrig uez, J.B. Goodenough, J. Solid State Chem. 118 (1995) 323. https://doi.org/10.1006/jssc.1995.1351
  3. L. Siurakshina, B. Paulus, V. Yushankhai, E. Sivachenko, Eur. Phys. J. B. 74 (2010) 53. https://doi.org/10.1140/epjb/e2010-00063-0
  4. D. Phelan, J. Yu, D. Louca, Phys. Rev. B 78 (2008) 094108. https://doi.org/10.1103/PhysRevB.78.094108
  5. M. Itoh, I. Natori, S. Kubota, K. Motoya, J. Phys. Soc. Jpn. 63 (1994) 1486. https://doi.org/10.1143/JPSJ.63.1486
  6. D.P. Kozlenko, N.O. Golosova, Z. Jirak, L.S. Dubrovinsky, B.N. Savenko, M.G. Tucker, Y. Le Godec, V.P. Glazkov, Phys. Rev. B 75 (2007) 064422. https://doi.org/10.1103/PhysRevB.75.064422
  7. A. Ikeda, T. Nomura, Y.H. Matsuda, A. Matsuo, K. Kindo, K. Sato, Phys. Rev. B 93 (2016) 220401. https://doi.org/10.1103/PhysRevB.93.220401
  8. M.A. Korotin, S.Y. Ezhov, I.V. Solovyev, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, Phys. Rev. B 54 (1996) 5309.
  9. M. Kriener, C. Zobel, A. Reichl, J. Baier, M. Cwik, K. Berggold, H. Kierspel, O. Zabara, A. Freimuth, T. Lorenz, Phys. Rev. B 69 (2004) 094417. https://doi.org/10.1103/PhysRevB.69.094417
  10. Y. Wang, Y. Sui, P. Ren, L. Wang, X.J. Wang, W.H. Su, H.J. Fan, Inorg. Chem. 49/7 (2010) 3216. https://doi.org/10.1021/ic902072v
  11. I. Fita, R. Szymczak, R. Puzniak, A. Wisniewski, I.O. Troyanchuk, D.V. Karpinsky, V. Markovich, H. Szymczak, Phys. Rev. B 83 (2011) 064414. https://doi.org/10.1103/PhysRevB.83.064414
  12. M.P. Breijo, S. Castro-Garcia, M.A. Senaris-Rodriguez, J. Mira, A. Fondado, J. Rivas, Ionics 5 (1999) 213. https://doi.org/10.1007/BF02375842
  13. A.B. Amor, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, J. Supercond. Nov. Magn. 31 (2018) 419. https://doi.org/10.1007/s10948-017-4225-z
  14. Y. Wang, H.J. Fan, Small 8/7 (2012) 1060.
  15. J. Wu, J.W. Lynn, C.J. Glinka, J. Burley, H. Zheng, J.F. Mitchell, C. Leighton, Phys. Rev. Lett. 94 (2005) 037201. https://doi.org/10.1103/PhysRevLett.94.037201
  16. R. Mahendiran, A.K. Raychaudhuri, Phys. Rev. B 54 (1996) 16045.
  17. C. Zhang, H. He, N. Wang, H. Chen, D. Kong, Ceram. Int. 39/4 (2013) 3685.
  18. J.T. Mefford, X. Rong, A.M. Abakumov, W.G. Hardin, S. Dai, A.M. Kolpak, K.P. Johnston, K.J. Stevenson, Nat. Commun. 7 (2016) 1.
  19. J.B. Goodenough, J. Phys. Chem. Solid. 6 (1958) 287. https://doi.org/10.1016/0022-3697(58)90107-0
  20. F. Fauth, E. Suard, V. Caignaert, Phys. Rev. B 65 (2001) 060401. https://doi.org/10.1103/PhysRevB.65.060401
  21. I. Fita, R. Szymczak, R. Puzniak, I.O. Troyanchuk, J. Fink-Finowicki, Y.M. Mukovskii, V.N. Varyukhin, H. Szymczak, Phys. Rev. B 71 (2005) 214404. https://doi.org/10.1103/PhysRevB.71.214404
  22. K. Muta, Y. Kobayashi, K. Asai, J. Phys. Soc. Jpn. 71 (2002) 2784. https://doi.org/10.1143/JPSJ.71.2784
  23. D. Kumar, A. Banerjee, J. Phys. Condens. Matter 25 (2013) 216005. https://doi.org/10.1088/0953-8984/25/21/216005
  24. D.N.H. Nam, K. Jonason, P. Nordblad, N.V. Khiem, N.X. Phuc, Phys. Rev. B 59 (1999) 4189. https://doi.org/10.1103/PhysRevB.59.4189
  25. N. Khan, P. Mandal, K. Mydeen, D. Prabhakaran, Phys. Rev. B 85 (2012) 214419. https://doi.org/10.1103/PhysRevB.85.214419
  26. J. Mira, J. Rivas, M. Vazquez, J.M.G. Beneytez, J. Arcas, R.D. Sanchez, M.A.S. Rodriguez, Phys. Rev. B 59 (1999) 123. https://doi.org/10.1103/PhysRevB.59.123
  27. D. Phelan, D. Louca, S. Rosenkranz, S.-H. Lee, Y. Qiu, P.J. Chupas, R. Osborn, H. Zheng, J.F. Mitchell, J.R.D. Copley, J.L. Sarrao, Y. Moritomo, Phys. Rev. Lett. 96 (2006) 027201. https://doi.org/10.1103/PhysRevLett.96.027201
  28. N. Khan, A. Midya, K. Mydeen, P. Mandal, A. Loidl, D. Prabhakaran, Phys. Rev. B 82 (2010) 064422. https://doi.org/10.1103/PhysRevB.82.064422
  29. A.P. Sazonov, I.O. Troyanchuk, H. Gamari-Seale, V.V. Sikolenko, K.L. Stefanopoulos, G.K. Nicolaides, Y.K. Atanassova, J. Phys. Condens. Matter 21 (2009) 156004. https://doi.org/10.1088/0953-8984/21/15/156004
  30. S.K. Banerjee, Phys. Lett. 12 (1964) 16.
  31. M. Parra-Borderias, F. Bartolome, J. Herrero-Albillos, L.M. Garcia, J. Alloys Compd. 481 (2009) 48. https://doi.org/10.1016/j.jallcom.2009.03.106
  32. D. Kim, B.L. Zink, F. Hellman, J.M.D. Coey, Phys. Rev. B 65 (2002) 214424. https://doi.org/10.1103/PhysRevB.65.214424
  33. W. Jiang, X.Z. Zhou, G. Williams, R. Privezentsev, Y. Mukovskii, Phys. Rev. B 79 (2009) 214433. https://doi.org/10.1103/PhysRevB.79.214433
  34. N. Orlovskaya, K. Kleveland, T. Grande, M.A. Einarsrud, J. Eur. Ceram. Soc. 20 (2000) 51. https://doi.org/10.1016/S0955-2219(99)00084-9
  35. V.V. Sikolenko, E.V. Pomjakushina, S.Y. Istomin, J. Magn. Magn. Mater. 258-259 (2003) 300. https://doi.org/10.1016/S0304-8853(02)01145-9
  36. V.V. Sikolenko, A.P. Sazonov, I.O. Troyanchuk, D. Tobbens, U. Zimmermann, E.V. Pomjakushina, H. Szymczak, J. Phys. Condens. Matter 16 (2004) 7313. https://doi.org/10.1088/0953-8984/16/41/012
  37. A. Mineshige, M. Inaba, T. Yao, Z. Ogumi, K. Kikuchi, M. Kawase, J. Solid State Chem. 121 (1996) 423. https://doi.org/10.1006/jssc.1996.0058
  38. A.M. Glazer, Acta Crystallogr. B 28 (1972) 3384. https://doi.org/10.1107/S0567740872007976
  39. T.L. Phan, Y.D. Zhang, P. Zhang, T.D. Thanh, S.C. Yu, J. Appl. Phys. 112 (2012) 093906. https://doi.org/10.1063/1.4764097
  40. J. Cwik, J. Alloys Compd. 580 (2013) 341. https://doi.org/10.1016/j.jallcom.2013.06.112
  41. J. Cwik, Y. Koshkid'ko, A. Mikhailova, N. Kolchugina, K. Nenkov, A. Hackemer, M. Miller, J. Appl. Phys. 117 (2015) 123912. https://doi.org/10.1063/1.4916353
  42. J.L. Wang, C.C. Tang, G.H. Wu, Q.L. Liu, N. Tang, W.Q. Wang, Wang, W.H.F.M. Yang, J.K. Liang, F.R. de Boer, K.H.J. Buschow, Solid State Commun. 121 (2002) 615. https://doi.org/10.1016/S0038-1098(02)00041-8
  43. K.H. Kim, T. Qian, B.G. Kim, J. Appl. Phys. 102 (2007) 033910. https://doi.org/10.1063/1.2767270
  44. A. Arrott, Phys. Rev. 108 (1957) 1394. https://doi.org/10.1103/PhysRev.108.1394
  45. T.L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, A.T. Le, A.D. Phan, S.C. Yu, J. Alloys Compd. 657 (2016) 818. https://doi.org/10.1016/j.jallcom.2015.10.162
  46. S.N. Kaul, J. Magn. Magn. Mater. 53 (1985) 5. https://doi.org/10.1016/0304-8853(85)90128-3
  47. A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19 (1967) 786. https://doi.org/10.1103/PhysRevLett.19.786
  48. B. Widom, J. Chem. Phys. 43 (1965) 3898. https://doi.org/10.1063/1.1696618
  49. M. Sahana, U.K. Rossler, N. Ghosh, S. Elizabeth, H.L. Bhat, K. Dorr, D. Eckert, M. Wolf, K.H. Muller, Phys. Rev. B 68 (2003) 144408. https://doi.org/10.1103/PhysRevB.68.144408
  50. V.V. Krishnamurthy, I. Watanabe, K. Nagamine, H. Kuwahara, Y. Tokura, Phys. Rev. B 61 (2000) 4060.
  51. Z. Mohamed, E. Tka, J. Dhahri, E.K. Hlil, J. Alloys Compd. 619 (2015) 520. https://doi.org/10.1016/j.jallcom.2014.08.119
  52. R. Caballero-Flores, N.S. Bingham, M.H. Phan, M.A. Torija, C. Leighton, V. Franco, A. Conde, T.L. Phan, S.C. Yu, H. Srikanth, J. Phys. Condens. Matter 26 (2014) 286001. https://doi.org/10.1088/0953-8984/26/28/286001
  53. T.A. Ho, T.D. Thanh, T.O. Ho, Q.T. Tran, T.L. Phan, S.C. Yu, IEEE Trans. Magn. 50 (2014) 2505104.
  54. F. Saadaoui, R. M'nassri, H. Omrani, M. Koubaa, N. Chniba Boudjada, A. Cheikhrouhou, RSC Adv. 6 (2016) 50968. https://doi.org/10.1039/C6RA08132K
  55. L. Zhang, J. Fang, J. Fan, M. Ge, L. Ling, C. Zhang, L. Pi, S. Tan, Y. Zhang, J. Alloys Compd. 588 (2014) 294. https://doi.org/10.1016/j.jallcom.2013.10.216
  56. S. Mukherjee, P. Raychaudhuri, A.K. Nigam, Phys. Rev. B 61 (2000) 8651. https://doi.org/10.1103/PhysRevB.61.8651
  57. E. Efimova, V. Efimov, D.V. Karpinsky, A. Kuzmin, J. Purans, V. Sikolenko, S. Tiutiunnikov, I. Troyanchuk, E. Welter, D. Zajac, V. Simkin, A. Sazonov, J. Phys. Chem. Solid. 69 (2008) 2187. https://doi.org/10.1016/j.jpcs.2008.03.040

Cited by

  1. Magnetocaloric effect in Ba-doped LaCoO3 cobaltites showing second-order phase transitions vol.539, pp.None, 2018, https://doi.org/10.1016/j.jmmm.2021.168378