DOI QR코드

DOI QR Code

Understanding spin configuration in the geometrically frustrated magnet TbB4: A resonant soft X-ray scattering study

  • Huang, H. (Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory) ;
  • Jang, H. (Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory) ;
  • Kang, B.Y. (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Cho, B.K. (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Kao, C.C. (SLAC National Accelerator Laboratory) ;
  • Liu, Y.J. (Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory) ;
  • Lee, J.S. (Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory)
  • 투고 : 2018.04.07
  • 심사 : 2018.05.03
  • 발행 : 2018.11.30

초록

The frustrated magnet has been regarded as a system that could be a promising host material for the quantum spin liquid (QSL). However, it is difficult to determine the spin configuration and the corresponding mechanism in this system, because of its geometrical frustration (i.e., crystal structure and symmetry). Herein, we systematically investigate one of the geometrically frustrated magnets, the $TbB_4$ compound. Using resonant soft x-ray scattering (RSXS), we explored its spin configuration, as well as Tb's quadrupole. Comprehensive evaluations of the temperature and photon energy/polarization dependences of the RSXS signals reveal the mechanism of spin reorientation upon cooling down, which is the sophisticated interplay between the Tb spin and the crystal symmetry rather than its orbit (quadrupole). Our results and their implications would further shed a light on the search for possible realization of QSL.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. P.W. Anderson, Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8 (1973) 153-160. https://doi.org/10.1016/0025-5408(73)90167-0
  2. T. Imai, Y.S. Lee, Do quantum spin liquids exist? Phys. Today 69 (2016) 30-36.
  3. L. Savary, L. Balents, Quantum spin liquids: a review, Rep. Prog. Phys. 80 (2016) 016502.
  4. Y. Zhou, K. Kanoda, T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89 (2017) 025003. https://doi.org/10.1103/RevModPhys.89.025003
  5. L. Balents, Spin liquids in frustrated magnets, Nature 464 (2010) 199-208. https://doi.org/10.1038/nature08917
  6. M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H.M. Yamamoto, R. Kato, T. Shibauchi, Y. Matsuda, Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid, Science 328 (2010) 1246-1248. https://doi.org/10.1126/science.1188200
  7. I. Syozi, Statistics of kagome lattice, Prog. Theor. Phys. 6 (1951) 306-308. https://doi.org/10.1143/ptp/6.3.306
  8. S. Yan, D.A. Huse, S.R. White, Spin-liquid ground state of the S=1/2 kagome Heisenberg antiferromagnet, Science 332 (2011) 1173-1176. https://doi.org/10.1126/science.1201080
  9. S. Depenbrock, I.P. McCulloch, U. Schollwock, Nature of the spin-liquid ground state of the S=1/2 Heisenberg model on the kagome lattice, Phys. Rev. Lett. 109 (2012) 067201. https://doi.org/10.1103/PhysRevLett.109.067201
  10. M. Fu, T. Imai, T.-H. Han, Y.S. Lee, Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet, Science 350 (2015) 655-658. https://doi.org/10.1126/science.aab2120
  11. H.J. Liao, Z.Y. Xie, J. Chen, Z.Y. Liu, H.D. Xie, R.Z. Huang, B. Normand, T. Xiang, Gapless spin-liquid ground state in the S=1/2 kagome antiferromagnet, Phys. Rev. Lett. 118 (2017) 137202. https://doi.org/10.1103/PhysRevLett.118.137202
  12. S. Nishimoto, N. Shibata, C. Hotta, Controlling frustrated liquids and solids with an applied field in a kagome Heisenberg antiferromagnet, Nat. Commun. 4 (2013) 2287. https://doi.org/10.1038/ncomms3287
  13. S. Capponi, O. Derzhko, A. Honecker, A.M. Lauchli, J. Richter, Numerical study of magnetization plateaus in the spin-1/2 kagome Heisenberg antiferromagnet, Phys. Rev. B 88 (2013) 144416. https://doi.org/10.1103/PhysRevB.88.144416
  14. B. Sriram Shastry, B. Sutherland, Exact ground state of a quantum mechanical antiferromagnet, Phys. B+C 108 (1981) 1069-1070. https://doi.org/10.1016/0378-4363(81)90838-X
  15. H. Kageyama, K. Yoshimura, R. Stern, N.V. Mushnikov, K. Onizuka, M. Kato, K. Kosuge, C.P. Slichter, T. Goto, Y. Ueda, Exact dimer ground state and quantized magnetization plateaus in the two-dimensional spin system $SrCu_2(BO_3)_2$, Phys. Rev. Lett. 82 (1999) 3168. https://doi.org/10.1103/PhysRevLett.82.3168
  16. K. Kodama, M. Takigawa, M. Horvatić, C. Berthier, H. Kageyama, Y. Ueda, S. Miyahara, F. Becca, F. Mila, Magnetic superstructure in the two-dimensional quantum antiferromagnet $SrCu_2(BO_3)_2$, Science 298 (2002) 395-399. https://doi.org/10.1126/science.1075045
  17. S. Yoshii, T. Yamamoto, M. Hagiwara, S. Michimura, A. Shigekawa, F. Iga, T. Takabatake, K. Kindo, Multistep magnetization plateaus in the shastry-sutherland system $TbB_4$, Phys. Rev. Lett. 101 (2008) 087202. https://doi.org/10.1103/PhysRevLett.101.087202
  18. S. Yoshii, K. Ohoyama, K. Kurosawa, H. Nojiri, M. Matsuda, P. Frings, F. Duc, B. Vignolle, G.L.J.A. Rikken, L.-P. Regnault, S. Michimura, F. Iga, Neutron diffraction study on the multiple magnetization plateaus in $TbB_4$ under pulsed high magnetic field, Phys. Rev. Lett. 103 (2009) 077203. https://doi.org/10.1103/PhysRevLett.103.077203
  19. T. Inami, K. Ohwada, Y.H. Matsuda, Z. Wen Ouyang, H. Nojiri, T. Matsumura, D. Okuyama, Y. Murakami, Resonant magnetic x-ray diffraction study on successive metamagnetic transitions in $TbB_4$, J. Phys. Soc. Jpn. 78 (2009) 033707. https://doi.org/10.1143/JPSJ.78.033707
  20. T. Inami, K. Ohwada, Y.H. Matsuda, Z.W. Ouyang, H. Nojiri, T. Matsumura, D. Okuyama, Y. Murakami, Resonant magnetic x-ray diffraction study on the successive metamagnetic transitions of $TbB_4$ up to 30 T, J. Phys. Conf. Ser. 211 (2010) 012010. https://doi.org/10.1088/1742-6596/211/1/012010
  21. I.A. Zaliznyak, J.M. Tranquada, Neutron scattering and its application to strongly correlated systems, Strongly Correlated Systems, Springer, Berlin, Heidelberg, 2015, pp. 205-235.
  22. H. Jang, B.Y. Kang, B.K. Cho, M. Hashimoto, D. Lu, C.A. Burns, C.-C. Kao, J.-S. Lee, Observation of orbital order in the half-filled 4f Gd compound, Phys. Rev. Lett. 117 (2016) 216404. https://doi.org/10.1103/PhysRevLett.117.216404
  23. T. Matsumura, D. Okuyama, Y. Murakami, Non-collinear magnetic structure of $TbB_4$, J. Phys. Soc. Jpn. 76 (2006) 015001.
  24. V.V. Novikov, N.V. Mitroshenkov, A.V. Morozov, A.V. Matovnikov, D.V. Avdashchenko, Thermal properties of $TbB_4$, J. Therm. Anal. Calorim. 113 (2013) 779-785. https://doi.org/10.1007/s10973-012-2814-4
  25. Z. Heiba, W. Schafer, E. Jansen, G. Will, Low-temperature structural phase transitions of $TbB_4$ and $ErB_4$ studied by high resolution X-ray diffraction and profile analysis, J. Phys. Chem. Solids 47 (1986) 651-658. https://doi.org/10.1016/0022-3697(86)90078-8
  26. S. Ji, Ph.D thesis in POSTECH and private communication.
  27. B.Y. Kang, J.Y. Kim, H.Y. Choi, B.K. Cho, Anomalous weak ferromagnetism in the magnetically frustrated system $RB_4$ (R = Tb and Dy), Phys. Rev. B 91 (2015) 024414. https://doi.org/10.1103/PhysRevB.91.024414
  28. J.-S. Rhyee, J.Y. Kim, B.K. Cho, Multiple magnetic transitions and magnon gaplike characteristics in the high purity $TbB_4$ single crystal, J. Appl. Phys. 101 (2007) 09D509. https://doi.org/10.1063/1.2710229
  29. J.P. Hill, D.F. McMorrow, Resonant exchange scattering: polarization dependence and correlation function, Acta Crystallogr. A 52 (1996) 236-244. https://doi.org/10.1107/S0108767395012670
  30. S.W. Lovesey, S.P. Collins, Scattering and Absorption by Magnetic Materials, Chap. 5 Oxford, Clarendon, 1996.
  31. D.H. Templeton, L.K. Templeton, X-ray dichroism and polarized anomalous scattering of the uranyl ion, Acta Crystallogr. A 38 (1982) 62-67.
  32. V.E. Dmitrienko, Anisotropy of X-ray susceptibility and Bragg reflections in cubic crystals, Acta Crystallogr. A 40 (1984) 89-95. https://doi.org/10.1107/S0108767384000209
  33. S. Ji, C. Song, J. Koo, K.-B. Lee, Y.J. Park, J.Y. Kim, J.-H. Park, H.J. Shin, J.S. Rhyee, B.H. Oh, B.K. Cho, Interference of magnetic and anisotropic tensor susceptibility reflections in resonant x-ray scattering of $GdB_4$, Phys. Rev. Lett. 91 (2003) 257205. https://doi.org/10.1103/PhysRevLett.91.257205
  34. Y. Murakami, J.P. Hill, D. Gibbs, M. Blume, I. Koyama, M. Tanaka, H. Kawata, T. Arima, Y. Tokura, K. Hirota, Y. Endoh, Resonant x-ray scattering from orbital ordering in $LaMnO_3$, Phys. Rev. Lett. 81 (1998) 582-585. https://doi.org/10.1103/PhysRevLett.81.582
  35. G. Subias, J. Herrero-Martin, J. Garcia, J. Blasco, C. Mazzoli, K. Hatada, S. Di Matteo, C.R. Natoli, Origin of the resonant x-ray scattering in $LaMnO_3$, Phys. Rev. B 75 (2007) 235101. https://doi.org/10.1103/PhysRevB.75.235101
  36. D. Okuyama, T. Matsumura, H. Nakao, Y. Murakami, Quadrupolar frustration in shastry-sutherland lattice of $DyB_4$ studied by resonant x-ray scattering, J. Phys. Soc. Jpn. 74 (2005) 2434-2437. https://doi.org/10.1143/JPSJ.74.2434
  37. G. van der Laan, Magnetic linear x-ray dichroism as a probe of the magnetocrystalline anisotropy, Phys. Rev. Lett. 82 (1999) 640-643. https://doi.org/10.1103/PhysRevLett.82.640
  38. G. van der Laan, Relation between x-ray magnetic linear dichroism and magnetocrystalline anisotropy, Magnetism and Synchrotron Radiation, Springer, Berlin, Heidelberg, 2001, pp. 339-342.