DOI QR코드

DOI QR Code

XMCD and PES study of a compensated-ferrimagnetic half-metal Mn3Ga

  • Seong, Seungho (Department of Physics, The Catholic University of Korea (CUK)) ;
  • Lee, Eunsook (Department of Physics, The Catholic University of Korea (CUK)) ;
  • Kim, Hee Yeon (Department of Physics, The Catholic University of Korea (CUK)) ;
  • Kim, Younghak (Pohang Accelerator Laboratory (PAL), POSTECH) ;
  • Baik, Jaeyoon (Pohang Accelerator Laboratory (PAL), POSTECH) ;
  • Kang, J.S. (Department of Physics, The Catholic University of Korea (CUK))
  • Received : 2018.03.01
  • Accepted : 2018.04.18
  • Published : 2018.11.30

Abstract

By employing soft X-ray magnetic circular dichroism (XMCD), soft X-ray absorption spectroscopy (XAS), and photoemission spectroscopy (PES), we have investigated the electronic structure of the candidate zero-moment half-metallic $Mn_3Ga$. We have studied the ball-milled and annealed $Mn_3Ga$ powder samples that exhibit nearly zero magnetization. Mn 2p XAS revealed that Mn ions in $Mn_3Ga$ are nearly divalent for both of the Mn ions having the locally octahedral symmetry and those having the locally tetrahedral symmetry. The measured Mn 2p XMCD spectrum of $Mn_3Ga$ is very similar to that of ferrimagnetic $MnFe_2O_4$ having divalent Mn ions. The sum-rule analysis of the Mn 2p XMCD spectrum shows that both the spin and orbital magnetic moments of Mn ions in $Mn_3Ga$ are negligibly small, in agreement with the nearly compensated-ferrimagnetic ground state of $Mn_3Ga$. The valence-band PES spectrum of $Mn_3Ga$ agrees well with the calculated density of states, supporting the half-metallic electronic structure of $Mn_3Ga$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50 (1983) 2024. https://doi.org/10.1103/PhysRevLett.50.2024
  2. K. Schwarz, J. Phys. F 16 (1986) L211. https://doi.org/10.1088/0305-4608/16/9/002
  3. S.J. Youn, B.I. Min, Phys. Rev. B 51 (1995) 10436. https://doi.org/10.1103/PhysRevB.51.10436
  4. S.P. Lewis, P.B. Allen, T. Sasaki, Phys. Rev. B 55 (1997) 10253. https://doi.org/10.1103/PhysRevB.55.10253
  5. M.A. Korotin, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, Phys. Rev. Lett. 80 (1998) 4305. https://doi.org/10.1103/PhysRevLett.80.4305
  6. I.I. Mazin, D.J. Singh, C. Ambrosch-Draxl, J. Appl. Phys. 85 (1999) 6220. https://doi.org/10.1063/1.370227
  7. D.I. Bilc, P. Ghosez, Phys. Rev. B 83 (2011) 205204. https://doi.org/10.1103/PhysRevB.83.205204
  8. S. Chadov, X. Qi, J. Kübler, G.H. Fecher, C. Felser, S.C. Zhang, Nat. Mater. 9 (2010) 541. https://doi.org/10.1038/nmat2770
  9. H. Lin, L.A. Wray, Y. Xia, S. Xu, S. Jia, R.J. Cava, A. Bansil, M.Z. Hasan, Nat. Mater. 9 (2010) 546. https://doi.org/10.1038/nmat2771
  10. S. Wurmehl, H.C. Kandpal, G.H. Fecher, C. Felser, J. Phys. Condens. Matter 18 (2006) 6171. https://doi.org/10.1088/0953-8984/18/27/001
  11. J. Winterlik, B. Balke, G.H. Fecher, C. Felser, M.V.M. Alves, F. Bernardi, J. Morais Phys. Rev. B 77 (2008) 054406. https://doi.org/10.1103/PhysRevB.77.054406
  12. T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39 (2011) 1. https://doi.org/10.1016/j.progsolidstchem.2011.02.001
  13. H. Kurt, K. Rode, M. Venkatesan, P. Stamenov, J.M.D. Coey, Phys. Status Solidi B 248 (2011) 2338. https://doi.org/10.1002/pssb.201147122
  14. H. Kurt, Appl. Phys. Lett. 101 (2012) 232402. https://doi.org/10.1063/1.4768941
  15. M. Hakimi, M. Venkatesan, K. Rode, K. Ackland, J.M.D. Coey, J. Appl. Phys. 113 (2013) 17B101. https://doi.org/10.1063/1.4794744
  16. P. Kharel, Y. Hus, N. Al-Aqtash, V.R. Shah, R.F. Sabirianov, R. Skomski, D.J. Sellmyer, J. Phys. Condens. Matter 26 (2014) 126001. https://doi.org/10.1088/0953-8984/26/12/126001
  17. H. Kurt, K. Rode, M. Venkatesan, P. Stamenov, J.M.D. Coey, Phys. Rev. B 83 (2011) 020405(R). https://doi.org/10.1103/PhysRevB.83.020405
  18. B. Balke, G.H. Fecher, J. Winterlik, C. Felser, Appl. Phys. Lett. 90 (2007) 152504. https://doi.org/10.1063/1.2722206
  19. Y. Huh, P. Kharel, V.R. Shah, F. Krage, R. Skomski, J.E. Shield, D.J. Sellmyer, IEEE Trans. Magn. 49 (2013) 3277. https://doi.org/10.1109/TMAG.2013.2244856
  20. F.M.F. de Groot, J.C. Fuggle, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 42 (1990) 5459. https://doi.org/10.1103/PhysRevB.42.5459
  21. G. van der Laan, I.W. Kirkman, J. Phys. Condens. Matter 4 (1992) 4189. https://doi.org/10.1088/0953-8984/4/16/019
  22. B.T. Thole, P. Carra, F. Sette, G. van der Laan, Phys. Rev. Lett. 68 (1992) 1943. https://doi.org/10.1103/PhysRevLett.68.1943
  23. C.T. Chen, Y.U. Idzerda, H.-J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H. Ho, E. Pellegrin, F. Sette, Phys. Rev. Lett. 75 (1995) 152. https://doi.org/10.1103/PhysRevLett.75.152
  24. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, Phys. Rev. Lett. 81 (1998) 1953. https://doi.org/10.1103/PhysRevLett.81.1953
  25. S. Hufner, Photoelectron spectroscopy, Solid-state Sciences vol. 82, Springer-Verlag, Berlin, 1995.
  26. Karsten Rode, Nadjib Baadji, Davide Betto, Yong-Chang Lau, Hüuseyin Kurt, M. Venkatesan, Plamen Stamenov, Stefano Sanvito, J.M.D. Coey, Phys. Rev. B 87 (2013) 184429. https://doi.org/10.1103/PhysRevB.87.184429
  27. Eunsook Lee, Seungho Seong, Hyun Woo Kim, D.H. Kim, Nidhi Thakur, S.M. Yusuf, Bongjae Kim, B.I. Min, Younghak Kim, J.-Y. Kim, F.M.F. de Groot, J.-S. Kang, Phys. Rev. B 96 (2017) 195120. https://doi.org/10.1103/PhysRevB.96.195120
  28. J.-S. Kang, G. Kim, S.C. Wi, S.S. Lee, S. Choi, Sunglae Cho, S.W. Han, K.H. Kim, H.J. Song, H.J. Shin, A. Sekiyama, S. Kasai, S. Suga, B.I. Min, Phys. Rev. Lett. 94 (2005) 147202. https://doi.org/10.1103/PhysRevLett.94.147202
  29. J.-S. Kang, G. Kim, H.J. Lee, D.H. Kim, H.S. Kim, J.H. Shim, S. Lee, Hangil Lee, J.- Y. Kim, B.H. Kim, B.I. Min, Phys. Rev. B 77 (2008) 035121. https://doi.org/10.1103/PhysRevB.77.035121
  30. J.-S. Kang, H.J. Lee, D.H. Kim, S. Kolesnik, B. Dabrowski, K. Swierczek, Jieun Lee, Bongjae Kim, B.I. Min, Phys. Rev. B 80 (2009) 045115. https://doi.org/10.1103/PhysRevB.80.045115
  31. T. Oguchi, T. Shishidou, Phys. Rev. B 70 (2004) 024412. https://doi.org/10.1103/PhysRevB.70.024412

Cited by

  1. Direct observation of ferrimagnetic ordering in inverse Heusler alloy Mn2CoAl vol.117, pp.1, 2020, https://doi.org/10.1063/5.0013656