DOI QR코드

DOI QR Code

Statistical Study and Prediction of Variability of Erythemal Ultraviolet Irradiance Solar Values in Valencia, Spain

  • Gurrea, Gonzalo (Departamento de Construcciones Arquitectonicas, Universitat Politecnica de Valencia) ;
  • Blanca-Gimenez, Vicente (Departamento de Construcciones Arquitectonicas, Universitat Politecnica de Valencia) ;
  • Perez, Vicente (Departamento de F?sica Aplicada, Universitat Politecnica de Valencia) ;
  • Serrano, Maria-Antonia (Departamento de F?sica Aplicada, Universitat Politecnica de Valencia) ;
  • Moreno, Juan-Carlos (Departamento de F?sica Aplicada, Universitat Politecnica de Valencia)
  • Received : 2017.09.06
  • Accepted : 2018.02.26
  • Published : 2018.11.30

Abstract

The goal of this study was to statistically analyse the variability of global irradiance and ultraviolet erythemal (UVER) irradiance and their interrelationships with global and UVER irradiance, global clearness indices and ozone. A prediction of short-term UVER solar irradiance values was also obtained. Extreme values of UVER irradiance were included in the data set, as well as a time series of ultraviolet irradiance variability (UIV). The study period was from 2005 to 2014 and approximately 250,000 readings were taken at 5-min intervals. The effect of the clearness indices on global irradiance variability (GIV) and UIV was also recorded and bi-dimensional distributions were used to gather information on the two measured variables. With regard to daily GIV and UIV, it is also shown that for global clearness index ($k_t$) values lower than 0.6 both global and UVER irradiance had greater variability and that UIVon cloud-free days ($k_t$ higher than 0.65) exceeds GIV. To study the dependence between UIVand GIV the ${\chi}^2$ statistical method was used. It can be concluded that there is a 95% probability of a clear dependency between the variabilities. A connection between high $k_t$ (corresponding to cloudless days) and low variabilities was found in the analysis of bidimensional distributions. Extreme values of UVER irradiance were also analyzed and it was possible to calculate the probable future values of UVER irradiance by extrapolating the values of the adjustment curve obtained from the Gumbel distribution.

Keywords

Acknowledgement

Supported by : Generalitat Valenciana

References

  1. Alados-Arboledas, L., Alados, I., Foyo-Moreno, I., Olmo, F.J., Alcantara, A.: The influence of clouds on surface UV erythemal irradiance. Atmos. Res. 66, 273-290 (2003). https://doi.org/10.1016/S0169-8095(03)00027-9
  2. Al-Aruri, S.D.: The empirical relationship between global radiation and global ultraviolet (0.290-0.385) mm solar radiation components. Sol. Energy. 45, 61-64 (1990) https://doi.org/10.1016/0038-092X(90)90028-B
  3. Anton, M., Gil, J.E., Cazorla, A., Fernandez-Galvez, J., Foyo-Moreno, I., Olmo, F.J., Alados-Arboledas, L.: Short-term variability of experimental ultraviolet and total solar irradiance in southeastern Spain. Atmos. Environ. 45, 4815-4821 (2011) https://doi.org/10.1016/j.atmosenv.2011.06.020
  4. ASTM: Standard constant and air mass zero solar spectral irradiance tables. American Society for Testing and Materials. (1973)
  5. Bais, AF., McKenzie, RL.: Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci. 14,19-52 (2015). https://doi.org/10.1039/c4pp90032d
  6. Barlett, J.S., Ciotti, A.M., Davis, R.F., Cullen, J.J.: The spectral effects of clouds on solar irradiance. J. Geophys. Res. 103, 31017-31031 (1998) https://doi.org/10.1029/1998JC900002
  7. Bilbao, J., Mateos, D., De Miguel, A.: Analysis and cloudiness influence on UV total irradiation. Int. J. Climatol. 31, 451-460 (2011). https://doi.org/10.1002/joc.2072
  8. Borkowski, J.L.: Modelling of UV radiation variations at different time scales. Ann. Geophys. 26, 441-446 (2008) https://doi.org/10.5194/angeo-26-441-2008
  9. Calbo, J., Pages, D., Gonzalez, J.: Empirical studies of cloud effects on radiation: a review. Rev. Geophys. 43, RG2002 (2005). https://doi.org/10.1029/2004RG-000155
  10. Cede, A., Blumthaler, M., Luccini, E., Piacentini, R.D., Nunez, L.: Effects of clouds on erythemal and total irradiance as derived from data of the argentine network. J. Geophys. Res. 29(24), 2223 (2002). https://doi.org/10.1029/2002GL015708.
  11. Chandrasekaran, J., Kumar, S.: Hourly diffuse fraction correlation at a tropical location. Solar energy. Elsevier B.V. 53, 505-510 (1994) https://doi.org/10.1016/0038-092X(94)90130-T
  12. Commission Internationale de l'Eclairage C.I.E: International lighting Vocabulary. 4th. Ed. commission Internationale de l'Eclairage, 379 pp. (1987)
  13. Commission Internationale de l'Eclairage C.I.E: Erythema Reference Action Spectrum and Standard Erythema Dose.CIE S007E-1998.CIE Central Bureau, Vienna, Austria. (1998)
  14. Foyo-Moreno, I., Vida, J., Alados-Arboledas, L.: A simple all weather model estimate of ultraviolet solar radiation (290-385 nm). J. Appl.Meteor. 38, 1020-1026 (1998)
  15. Frolich, C., London, J.: Revised Instruction Manual on radiation instruments and measurements.WCRP Pub. Series.No.7, WMO/TD 140 pp. (1986)
  16. Gonzalez, J.A., Calbo, J.: Influence of the global radiation variability on the hourly diffuse fraction correlations. Sol. Energy. 65, 119-131 (1999) https://doi.org/10.1016/S0038-092X(98)00121-2
  17. Gueymard, C.A., Ruiz-Arias, J.A.: Performance of separation models to predict direct irradiance at high frequency : validation over arid areas. Int Sol Energy Conf. 16-19 (2014). https://doi.org/10.18086/eurosun.2014.08.06
  18. Gumbel, E.J.: Statistical theory of extreme values and some practical applications. National Bureau of Standards. Appl. Mathem. 33, 343-354 (1954)
  19. Gutierrez, S.: Bioestadística. Ed. Tebar Flores, Madrid, pp.154. (1978)
  20. Haigh, J.: Solar influences on climate. Grantham Institute for climate change. Briefing paper No 5. (2011)
  21. Hegglin, M.I., Shepherd, T.G.: Largeclimate-Inducedchanges in Ultravioletindex and stratosphere-to-troposphere ozone flux. Nat. Geosci. 2, 687-691 (2009) https://doi.org/10.1038/ngeo604
  22. Holick, M.F.: Vitamin D: importance in the prevention of cancers, type diabetes, heart disease, and osteoporosis. Am. J. Clin.Nutr. 79, 362-371 (2004) https://doi.org/10.1093/ajcn/79.3.362
  23. Hülsen, G., Grobner, J.: Characterization and calibration of ultraviolet broadband radiometers measuring erythemally weighted irradiance. Appl. Opt. 46, 5877-5886 (2007) https://doi.org/10.1364/AO.46.005877
  24. Iqbal, M.: An introduction to solar radiation. Academic Press, Canada (1983)
  25. Jodar, B.: Analisis estadístico de experimentos. Ed. Alhambra. pp.180 (1981)
  26. Joonsuk, L.,Won, J.C., Deok, R.K., Seung, Y.K., Chang, K.S., Jun, S.H., Youdeog, H., Sukjo, L.: The effect of ozone and aerosols on the surface erythemal UVradiation estimated from OMI measurements. Asia-Pac. J. Atmos. Sci. 49(3), 271-278 (2013) https://doi.org/10.1007/s13143-013-0026-x
  27. Kuye, A., Jagtap, S.S.: Analysis of solar radiation data for Port Harcourt, Nigeria. Solar energy. Elsevier B.V. 49, 139-145 (1992) https://doi.org/10.1016/0038-092X(92)90148-4
  28. Li, D.H.W., Lam, J.C.: An analysis of climatic parameters and sky condition classification. Build. Environ. 36, 435-445 (2001) https://doi.org/10.1016/S0360-1323(00)00027-5
  29. Li, D.H.W., Lau, C.C.S., Lam, J.C.: Overcast sky conditions and luminance distribution in Hong Kong. Build. Environ. 39, 101-108 (2004) https://doi.org/10.1016/j.buildenv.2003.06.001
  30. Liu, B.H., Jordan, R.C.: The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol. Energy. 4, 1-19 (1960)
  31. Mateos, D., Bilbao, J., de Miguel, A., Perez-Burgos, A.: Dependence of ultraviolet (erythemal and total) radiation and CMF values on total and low cloud covers in Central Spain. Atmos. Res. 98, 21-27 (2010). https://doi.org/10.1016/j.atmosres.2010.05.002.
  32. Murillo, W., Canada, J., Pedros, G.: Correlation between global ultraviolet (290-385 nm) and global irradiation in Valencia and Cordoba (Spain). Renew. Energy. 28, 409-418 (2003) https://doi.org/10.1016/S0960-1481(02)00039-3
  33. Orgill, J.F., Hollands, K.G.T.: Correlation equation for hourly diffuse radiation on a horizontal surface. Solar energy. Elsevier B.V. 19, 357-359 (1977) https://doi.org/10.1016/0038-092X(77)90006-8
  34. Reindl, D.T., Beckman, W.A., Duffie, J.A.: Diffuse fraction correlations. Solar energy. Elsevier B.V. 45, 1-7 (1990) https://doi.org/10.1016/0038-092X(90)90060-P
  35. Roman, R., Bilbao, J., De Miguel, A.: Erythemal ultraviolet irradiation trends in the Iberian Peninsula from 1950 to 2011. Atmos. Chem. Phys. 15, 375-391 (2015). https://doi.org/10.5194/acp-15-375-2015
  36. Sabburg, J., Parisi, A.V.: Spectral dependency of cloud enhanced UV irradiance. Atmos. Res. 81, 206-214 (2006) https://doi.org/10.1016/j.atmosres.2005.11.011
  37. Sabburg, J.,Wong, J.: The effect of clouds on enhancing UVB irradiance at the earth's surface: a one year study. Geophys. Res. Lett. 27(20), 3337-3340 (2000) https://doi.org/10.1029/2000GL011683
  38. Sabziparvar, A.A.: Estimation of clear-sky effective erythema radiation from broadcast solar radiation (300-3000 nm) data in an arid climate. Int. J. Climatol. Phys. 29, 2027-2032 (2009) https://doi.org/10.1002/joc.1848
  39. Serrano, A., Anton, M., Cancillo, M.L., Mateos, V.L.: Daily and annual variations of erythemal ultraviolet radiation in southwestern Spain. Ann. Geophys. 24, 427-441 (2006) https://doi.org/10.5194/angeo-24-427-2006
  40. Serrano, D., Nunez, M., Utrillas, M.P., Marin, M.J., Marcos, C., Martinez-Lozano, J.A.: Effective cloud optical depth for overcast conditions determined with a UV radiometers. Int. J. Climatol. 34, 3939-3952 (2014). https://doi.org/10.1002/joc.3953
  41. Soubdhan, T., Emilion, R., Calif, R.: Classification of daily solar radiation distributions using a mixture of Dirichlet distributions. Sol. Energy. 83, 1056-1063 (2009) https://doi.org/10.1016/j.solener.2009.01.010
  42. Tomson, T., Tamm, G.: Short-term variability of solar radiation. Sol. Energy. 80(5), 600-606 (2006) https://doi.org/10.1016/j.solener.2005.03.009
  43. UNEP: Environmental effects of ozone depletion and its interactions with climate change: 2014 Assesment, United Nations Environment Programme (UNEP), ISBN 978-9966-076-04-5, Nairobi, Kenya (2015)
  44. Vilaplana, J.M., Cachorro, V.E., Sorribas, M., Luccini, E., de Frutos, A.M., Berjon, A., de laMorena, B.:Modified calibration procedures for a Yankee environmental system UVB-1 biometer based on spectral measurements with a brewer spectrophotometer. J. Photochem. Photobiol. 82, 508-514 (2006) https://doi.org/10.1562/2005-06-23-RA-590
  45. Woyte, A., Belmans, R., Nijs, J.: Fluctuations in instantaneous clearness index: analysis and statistics. Sol. Energy. 81, 195-206 (2007) https://doi.org/10.1016/j.solener.2006.03.001

Cited by

  1. Relative Contributions of Clouds and Aerosols to Surface Erythemal UV and Global Horizontal Irradiance in Korea vol.13, pp.6, 2018, https://doi.org/10.3390/en13061504