DOI QR코드

DOI QR Code

Impact of Change in Monsoonal Circulation Due to SST Warming on the North East Asian Monsoon: A Model Analysis Using Satellite Based Sub-Grid Hydrometeors

  • Received : 2017.11.14
  • Accepted : 2018.09.17
  • Published : 2018.11.30

Abstract

Over the North East Asia, extreme anomalous precipitation were observed in 2013 and 2014. During 2013 summer the precipitation was found to be higher (two standard deviation) than the climatological mean of the region; whereas during 2014, which was a borderline El Ni?o year, precipitation was found to be lower (one standard deviation). To understand the differences of these two anomalous years the Global/Regional Integrated Model system (GRIMs) has been used. The study found that low landsurface temperature and high sea-surface temperature over ocean caused a smaller land-sea contrast of surface temperature between East Asia and North West Pacific Ocean in 2014, which could have caused an eastward shift of mean monsoon circulation in that year compared to the circulation in 2013. Due to a change in the lower level circulation and wind field over East Asia the evaporation and moisture transport patterns became very different in those two years. In 2013, this study found high latent heat flux over Eastern China, which implies an increased surface evaporation over that region, and the moisture transported to the north by the mean monsoon circulation; whereas, there was no correlated transport of moisture to the North East Asia during 2014. The precipitable water over North East Asia has a stronger correlation with the latent heat flux over southern land region than that from Ocean region in the eastern side in both the years. A new approach is proposed to estimate the sub-grid scale hydrometeors from GRIMs, overestimated in the existing model.

Keywords

References

  1. Ashok, K., Behera, S.K., Rao, S.A., Weng, H., Yamagata, T.: El Nino Modoki and its possible teleconnection. J. Geophysical Res: Oceans. 112, C11007 (2007). https://doi.org/10.1029/2006JC003798
  2. Bae, S.-Y., Hong, S.-Y., Lim, K.-S.: Coupling WRF doublemoment 6-class microphysics schemes to RRTMG radiation scheme inweather research and forecasting Model. Adv. Meteor. 2016, 5070154, 11 (2016). https://doi.org/10.1155/2016/5070154
  3. Bhattacharya, A., Chakraborty, A., Venugopal, V.: Variability of cloud liquid water and ice over South Asia from TMI estimates. Clim. Dyn. 42(9-10), 2411-2421 (2014) https://doi.org/10.1007/s00382-013-1978-3
  4. Bhattacharya, A., Chakraborty, A., Venugopal, V.: Role of aerosols in modulating cloud properties during active-break cycle of Indian summer monsoon. Clim. Dyn. 49(5), 2131-2145 (2017). https://doi.org/10.1007/s00382-016-3437-4
  5. Brutsaert, W.: Daily evaporation from drying soil: universal parameterization with similarity. Water Resour. Res. 50(4), 3206-3215 (2014) https://doi.org/10.1002/2013WR014872
  6. Cai, J., Xu, J., Guan, Z., Powell, A.M.,: Inter decadal variability of El Nino onset and its impact on monsoon systems over areas encircling the Pacific Ocean. Clim. Dynam. (2016). https://doi.org/10.1007/s00382-016-3377-z
  7. Chang, C., Zhang,Y., Li, T.: Interannual and interdecadal variations of the east Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J. Clim. 13(24), 4310-4325 (2000) https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2
  8. Chen, T.-J.-G., Chang, C.-P.: The structure and vorticity budget of an early summer monsoon trough (Mei-Yu) over southeastern China and Japan. Mon. Weather Rev. 108(7), 942-953 (1980) https://doi.org/10.1175/1520-0493(1980)108<0942:TSAVBO>2.0.CO;2
  9. Cheong, H.: A dynamical Core with double Fourier series: comparison with the spherical harmonics method. Mon. Wea. Rev. 134, 1299-1315 (2006) https://doi.org/10.1175/MWR3121.1
  10. Chevallier, F., Bauer, P.: Model rain and clouds over oceans: comparison with SSM/I observations. Mon. Weather Rev. 131(7), 1240-1255 (2003) https://doi.org/10.1175/1520-0493(2003)131<1240:MRACOO>2.0.CO;2
  11. Choi, H.-J.,Hong, S.-Y.: An updated subgrid orographic parameterization for global atmospheric forecast models. J. Geophys Res: Atmos. 120(24), 12,445-12,457 (2015) https://doi.org/10.1002/2015JD024230
  12. Choi, J., An, S.-I., Kug, J.-S., Yeh, S.-W.: The role of mean state on changes in El Ninos flavor. Clim. Dyn. 37(5-6), 1205-1215 (2011) https://doi.org/10.1007/s00382-010-0912-1
  13. Chokngamwong, R., Chiu, L.S.: Thailand daily rainfall and comparison with TRMM products. J. Hydrometeorol. 9, 256-266 (2008) https://doi.org/10.1175/2007JHM876.1
  14. Collins, M., Coauthors: The impact of global warming on the tropical Pacific Ocean and El Nino. Nat. Geosci. 3(6), 391-397 (2010) https://doi.org/10.1038/ngeo868
  15. Davarzani, H., Smits, K., Tolene, R.M., Illangasekare, T.: Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. Water Resour. Res. 50(1), 661-680 (2014) https://doi.org/10.1002/2013WR013952
  16. Ding, Y., 2004: Seasonal March of the East-Asian Summer Monsoon. In: East Asian Monsoon. World Scientific, pp 3-53,
  17. Dinku, T., Ceccato, P., Grover-Kopec, E., Lemma, M., Connor, S.J., Ropelewski, C.F.: Validation of satellite rainfall products over East Africa's complex topography. Int. J. Climatol. 28, 1503-1526 (2007)
  18. Dong, X., Fan, F.X., Lin, R.P., Jin, J.B., Lian, R.X.: Simulation of the western North Pacific subtropical high in El Nino decaying summers byCMIP5 AGCMs. Atmos. Oceanic Sci. Lett. 10(2), 146-155 (2017) https://doi.org/10.1080/16742834.2017.1272404
  19. Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., Tarpley, J.D.: Implementation of Noah land surface model advances in the National Centers for environmental prediction operational mesoscale eta model. J Geophys Res: Atmos. 108(D22), 2156-2202 (2003). https://doi.org/10.1029/2002JD003296
  20. Goswami, B., Krishnamurthy, V., Annmalai, H.: A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q.J.R. Meteorol. Soc. 125(554), 611-633 (1999) https://doi.org/10.1002/qj.49712555412
  21. Ha, K.J., Heo, K.Y., Lee, S.S.,Yun,K.S., Jhun, J.G.:Variability in the east Asian monsoon: a review. Meteorol. Appl. 19(2), 200-215 (2012) https://doi.org/10.1002/met.1320
  22. Halder, M., Mukhopadhyay, P., Halder, S., 2012: Study of themicrophysical properties associated with the monsoon Intraseasonal oscillation as seen from the TRMM observations. In: Annales Geophysicae, Copernicus GmbH, 30, 897 https://doi.org/10.5194/angeo-30-897-2012
  23. Han, J., Pan,H.-L.: Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather Forecast. 26(4), 520-533 (2011) https://doi.org/10.1175/WAF-D-10-05038.1
  24. Han, J.-Y., Hong, S.-Y., Sunny Lim, K.-S., Han, J.: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Weather Rev. 144(6), 2125-2135 (2016) https://doi.org/10.1175/MWR-D-15-0255.1
  25. Hong, S.-Y., Park, H., Cheong, H.-B., Kim, J.-E. E., Koo,M.-S., Jang J., Ham, S., Hwang, S.-O., Park, B.-K., Chang., E.-C., Haiqin, L.: The global/regional integrated model system (GRIMs). Asia-Pac. J. Atmos. Sci. 49(2), 219-243 (2013). https://doi.org/10.1007/s13143-013-0023-0
  26. Hong, S.-Y., Dudhia, J., Chen, S.-H.: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 132(1), 103-120 (2004) https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
  27. Hong, S.-Y., Noh, Y., Dudhia, J.: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134(9), 2318-2341 (2006) https://doi.org/10.1175/MWR3199.1
  28. Hong, S.-Y., Choi, J., Chang, E.-C., Park, H., Kim, Y.-J.: Lowertropospheric enhancement of gravity wave drag in a global spectral atmospheric forecastmodel. Weather Forecast. 23(3), 523-531 (2008) https://doi.org/10.1175/2007WAF2007030.1
  29. Huijun, W.: The weakening of the Asian monsoon circulation after the end of 1970's. Adv. Atmos. Sci. 18(3), 376-386 (2001) https://doi.org/10.1007/BF02919316
  30. Iacono, M.J., Delamere, J.S., Mlawer, E.J., Shephard, M.W., Clough, S.A., Collins, W.D.: Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res: Atmos. 113, D13103 (2008). https://doi.org/10.1029/2008JD009944
  31. IMD, 2015: Monsoon 2014:a report. IMD Met Monograph no: ESSO Document no : ESSO/IMD/Synoptic Met/01(2015)/17 India Met Department Eds Pai DS and Bhan SC http://www.imdpunegovin
  32. IMD, 2016: Monsoon 2015:a report. IMD Met Monograph no: ESSO/IMD/Synoptic Met/01(2016)/20 India Met Department Eds Pai DS and Bhan SC http://www.imdpunegovin
  33. Islam, M.N., Uyeda, H.: Use of TRMMin determining the climatic characteristics of rainfall over Bangladesh. Remote Sens. Environ. 108(3), 264-276 (2007) https://doi.org/10.1016/j.rse.2006.11.011
  34. Jin,M.S., Mullens, T.: A study of the relations between soil moisture, soil temperatures and surface temperatures using arm observations and offline clm4 simulations. Climate. 2(4), 279-295 (2014) https://doi.org/10.3390/cli2040279
  35. Joseph, V.P., Gokulapalan, B., Nair, A., Sheela,W.: Variability of summer monsoon rainfall in India on inter-annual and decadal time scales. Atmos. Oceanic Sci. Lett. 6(5), 398-403 (2013). https://doi.org/10.3878/j.issn.1674-2834.13.0044
  36. Koo, M.-S., Hong, S.-Y.: Double Fourier series dynamical core with hybrid sigma-pressure vertical coordinate. Tellus. 65A, 19851 (2013). https://doi.org/10.3402/tellusa.v65i0.19851
  37. Kug, J.-S., Jin, F.F., An, S.-I.: Two types of El Nino events: cold tongue El Nino and warm pool El Nino. J. Clim. 22(6), 1499-1515 (2009) https://doi.org/10.1175/2008JCLI2624.1
  38. Kummerow, C., Hong, Y., Olson, W., Yang, S., Adler, R., McCollum, J., Ferraro, R., Petty, G., Shin, D.B., Wilheit, T.: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteorol. 40(11), 1801-1820 (2001) https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
  39. Kummerow, C.D., Ringerud, S., Crook, J., Randel, D., Berg, W.: An observationally generated a priori database for microwave rainfall retrievals. J. Atmos. Ocean. Technol. 28(2), 113-130 (2011) https://doi.org/10.1175/2010JTECHA1468.1
  40. Kwon, Y.-C., Hong, S.-Y.: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Weather Rev. 145(2), 583-598 (2017) https://doi.org/10.1175/MWR-D-16-0034.1
  41. Lee, J.W., Hong, S.-Y.: Potential for added value to downscaled climate extremes over Korea by increased resolution of a regional climate model. Theor. Appl. Climatol. 117(3), 667-677 (2014). https://doi.org/10.1007/s00704-013-1034-6
  42. Lee, J.W., Hong, S.-Y., Chang, E.-C., Suh, M.-S., Kang, H.-S.: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by grimsrmp. Clim. Dyn. 42(3), 733-747 (2014). https://doi.org/10.1007/s00382-013-1841-6
  43. Lin, R., Zhu, J., Zheng, F.: Decadal shifts of east Asian summer monsoon in a climate model free of explicit GHGs and aerosols. Sci. Rep. 6, 38546 (2016). https://doi.org/10.1038/srep38546
  44. Min, Q., Su, J., Zhang, R., Rong, X.:What hindered the El Nino pattern in 2014? Geophys. Res. Lett. 42(16), 6762-6770 (2015) https://doi.org/10.1002/2015GL064899
  45. Nicholson, S.E.: A revised picture of the structure of the "monsoon" and land ITCZ over West Africa. Clim. Dyn. 32(7-8), 1155-1171 (2009) https://doi.org/10.1007/s00382-008-0514-3
  46. Paek, H., Yu, J.-Y., Qian, C.: Why were the 2015/2016 and 1997/1998 extreme El Ninos different? Geophys. Res. Lett. 44(4), 1848-1856 (2017)
  47. Park, R.S., Chae, J.H., Hong, S.Y.: A revised prognostic cloud fraction scheme in a global forecasting system. Mon. Weather Rev. 144(3), 1219-1229 (2016) https://doi.org/10.1175/MWR-D-15-0273.1
  48. Qian, W., Lee, D.K.: Seasonal march of Asian summer monsoon. Int. J. Climatol. 20(11), 1371-1386 (2000) https://doi.org/10.1002/1097-0088(200009)20:11<1371::AID-JOC538>3.0.CO;2-V
  49. Qian,W., Kang, H.-S., Lee, D.-K.: Distribution of seasonal rainfall in the east Asian monsoon region. Theor. Appl. Climatol. 73(3), 151-168 (2002) https://doi.org/10.1007/s00704-002-0679-3
  50. Rahman, S.H., Sengupta, D., Ravichandran, M.: Variability of Indian summer monsoon rainfall in daily data from gauge and satellite. J. Geophys. Res. 114, D17113, (2009). https://doi.org/10.1029/2008JD011694
  51. Rasmusson, E.M.: El Nino and variations in climate: large-scale interactions between the ocean and the atmosphere over the tropical Pacific can dramatically affect weather patterns around the world. Am. Sci. 73(2), 168-177 (1985)
  52. Rasmusson, E.M., Carpenter, T.H.: Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Nino. Mon. Weather Rev. 110(5), 354-384 (1982) https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
  53. Rasul, G., Chaudhry, Q.: Review of advance in research on Asian summer monsoon. Pakistan J. Meteorol. 6(12), 1-10 (2010)
  54. Riyu, L.: Indices of the summertime western North Pacific subtropical high. Adv. Atmos. Sci. 19(6), 1004-1028 (2002). https://doi.org/10.1007/s00376-002-0061-5
  55. Roca, R., Chambon, P., Jobard, I., Kirstetter, P.-E., Gosset, M., Berge, J.C.: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error estimates. J. Appl. Meteorol. 49, 715-731 (2011)
  56. Ronghui, H., Yifang, W.: The influence of ENSO on the summer climate change in China and its mechanism. Adv. Atmos. Sci. 6(1), 21-32 (1989) https://doi.org/10.1007/BF02656915
  57. Sassen, K.,Wang, Z.: Classifying clouds around the globe with the cloudsat radar: 1-year of results. Geophys. Res. Lett. 35(4), (2008)
  58. Sapiano, M.R., Arkin, P.A.: An intercomparison and validation of highresolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeorol. 10, 149-166 (2009). https://doi.org/10.1175/2008JHM1052.1
  59. Shin, H.H., Hong, S.Y.: Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Weather Rev. 143(1), 250-271 (2015) https://doi.org/10.1175/MWR-D-14-00116.1
  60. Son, H.-Y., Park, J.-Y., Kug, J.-S.: Precipitation variability in September over the Korean peninsula during ENSO developing phase. Clim. Dyn. 46(11-12), 3419-3430 (2016) https://doi.org/10.1007/s00382-015-2776-x
  61. Subrahmanyam, K.V., Kumar, K.K.: CloudSat observations of cloudtype distribution over the Indian summer monsoon region. Ann. Geophys. 31, 1155-1162 (2013). https://doi.org/10.5194/angeo-31-1155-2013
  62. Sun, B., Wang, H.: Inter-decadal transition of the leading mode of interannual variability of summer rainfall in East China and its associated atmospheric water vapor transport. Clim. Dyn. 44(9-10), 2703-2722 (2015) https://doi.org/10.1007/s00382-014-2251-0
  63. Sunny Lim, K.-S., Hong, S.-Y., Yoon, J.H., Han, J.: Simulation of the summer monsoon rainfall over East Asia using the NCEP GFS cumulus parameterization at different horizontal resolutions. Weather Forecast. 29(5), 1143-1154 (2014) https://doi.org/10.1175/WAF-D-13-00143.1
  64. Tsuyuki, T., Kurihara, K.: Impact of convective activity in the western tropical pacific on the east Asian summer circulation. J. Meteor. Soc. Japan. 67(2), 231-247 (1989). https://doi.org/10.2151/jmsj1965.67.2_231
  65. Venugopal, V., Wallace, J.M.: Climatology of contribution-weighted tropical rain rates based on TRMM 3B42. Geophys. Res. Lett. 43(19), 10439-10447 (2016) https://doi.org/10.1002/2016GL069909
  66. Wang, B.: Rainy season of the Asian-Pacific summer monsoon. J. Clim. 15(4), 386-398 (2002) https://doi.org/10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
  67. Wang, B., Fan, Z.: Choice of south Asian summer monsoon indices. Bull. Am. Meteorol. Soc. 80(4), 629-638 (1999) https://doi.org/10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2
  68. Wang, B., Li, T., 2004: East AsianMonsoon-ENSO Interactions. In: East Asian Monsoon, World Scientific, pp 177-212
  69. Wang, B., Zhang, Q.: Pacific-east Asian teleconnection. Part ii: how the Philippine sea anomalous anticyclone is established during El Nino development. J. Clim. 15(22), 3252-3265 (2002) https://doi.org/10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2
  70. Wang, B., Wu, R., Fu, X.: Pacific-east Asian teleconnection: how does ENSO affect east Asian climate? J. Clim. 13(9), 1517-1536 (2000) https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2
  71. Wang, B., Wu, R., Lau, K.: Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western North Pacific-east Asian monsoons. J. Clim. 14(20), 4073-4090 (2001) https://doi.org/10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2
  72. Wang, B., Yim, S.-Y., Lee, J.-Y., Liu, J., Ha, K.-J.: Future change of Asian-Australian monsoon under RCP 4.5 anthropogenic warming scenario. Clim. Dyn. 42(1-2), 83-100 (2014) https://doi.org/10.1007/s00382-013-1769-x
  73. Wang, L.,Wu, Z., He, H.,Wang, F., Du,H., Zong, S.: Changes in summer extreme precipitation in Northeast Asia and their relationships with the east Asian summer monsoon during 1961-2009. Int. J. Climatol. 37(1), 25-35 (2017) https://doi.org/10.1002/joc.4683
  74. Webster, P.J., Yang, S.: Monsoon and ENSO: selectively interactive systems. Q. J. R. Meteorol. Soc. 118(507), 877-926 (1992) https://doi.org/10.1002/qj.49711850705
  75. Webster, P.J., Magana, V.O., Palmer, T., Shukla, J., Tomas, R., Yanai, M., Yasunari, T.: Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res: Oceans. 103(C7), 14,451-14,510 (1998) https://doi.org/10.1029/97JC02719
  76. Weng, H., Ashok, K., Behera, S.K., Rao, S.A., Yamagata, T.: Impacts of recent El Nino Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim. Dyn. 29(2-3), 113-129 (2007) https://doi.org/10.1007/s00382-007-0234-0
  77. Wu, R., Wang, B.: A contrast of the east Asian summer monsoon-ENSO relationship between 1962-77 and 1978-93. J. Clim. 15(22), 3266-3279 (2002) https://doi.org/10.1175/1520-0442(2002)015<3266:ACOTEA>2.0.CO;2
  78. Xu, J., Chan, J.-C.: The role of the Asian-Australian monsoon system in the onset time of El Nino events. J. Clim. 14(3), 418-433 (2001) https://doi.org/10.1175/1520-0442(2001)014<0418:TROTAA>2.0.CO;2
  79. Xue, F., Fan, F.: Anomalous western Pacific subtropical high during late summer in weak La Nina years: contrast between 1981 and 2013. Adv. Atmos. Sci. 33, 1351 (2016). https://doi.org/10.1007/s00376-016-5281-1
  80. Yeh, T., Wetherald, R.T., Manabe, S.: The effect of soil moisture on the short-term climate and hydrology change-a numerical experiment. Mon. Wea. Rev. 112, 474-490 (1984). https://doi.org/10.1175/1520-0493(1984)112<0474:TEOSMO>2.0.CO;2
  81. Yeh, S.W., Kug, J.S., Dewitte, B., Kwon, M.-H., Kirtman, B.P., Jin, F.F.: El Nino in a changing climate. Nature. 461(7263), 511-514 (2009) https://doi.org/10.1038/nature08316
  82. Yeh, S.-W., Kug, J.-S., An, S.I.: Recent progress on two types of El Nino: observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci. 50(1), 69-81 (2014) https://doi.org/10.1007/s13143-014-0028-3
  83. Yeh, S.W., Cai, W., Min, S.K., McPhaden, M.J., Dommenget, D., Dewitte, B., Collins, M., Ashok, K., An, S.I., Yim, B.Y., Kug, J.S.: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys. 56(1), 185-206 (2018) https://doi.org/10.1002/2017RG000568
  84. Yu, J.-Y., Kao, H.-Y.: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. J Geophys Res: Atmos. 112(D13), (2007)
  85. Zhang, R., Sumi, A., Kimoto, M.: Impact of El Nino on the east Asian monsoon. J. Meteor. Soc. Japan. 74(1), 49-62 (1996) https://doi.org/10.2151/jmsj1965.74.1_49
  86. Zhou, T.-J., Yu, R.-C.: Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res: Atmos. 110, D08104 (2005). https://doi.org/10.1029/2004JD005413
  87. Zuluaga, M.D., Hoyos, C.D., Webster, P.J.: Spatial and temporal distribution of latent heating in the south Asian monsoon region. J. Clim. 23(8), 2010-2029 (2010) https://doi.org/10.1175/2009JCLI3026.1