References
- Contribution of working group I,II and III, "Climate Change 2014 Synthesis Report", Intergovernmmental Panel on Climate Change, Switzerland, 2014, pp. 1-151.
-
P. Friedlingstein, P. M. Andrew, J. Rogelj, G. P. Peters, J. G. Canadell, R. Knutti, G. Luderer, M. R. Raupach, M. Schaeffer, D. P. van Vuuren, and C. Le Quere, "Persistent growth of
$CO_2$ emissions and implications for reaching climate targets", Nature Geoscience, Vol. 7, 2014, pp. 709-715. https://doi.org/10.1038/ngeo2248 - United Nations, "Paris agreement", United Nations, Paris, 2015, pp. 1-27.
- Ministry of Environment, "2030 Greenhouse Gas Reduction Roadmap", Korea, 2018, pp. 1-24.
-
R. M. Cuellar-Franca and A. Azapagic, "Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life environmental impacts", Journal of
$CO_2$ Utilization, Vol. 9, 2015, pp. 82-102. https://doi.org/10.1016/j.jcou.2014.12.001 - T, Naucler and P. A. Enkvlst, "Pathways to a low-carbon economy", Mckinsey & Company, 2009, pp. 1-190.
- J. G. Shim, Y. H. Jhon, J. H. Kim, J. H. Lee, I. Y. Lee, K. R. Jang, and J. Kim, "Calculated accessibilities and nucleophilicities of linear and cyclic amines for carbon dioxide absorption reactions", Bulletin Korean Chemical Society, Vol. 32, 2011, pp. 2813-2816. https://doi.org/10.5012/bkcs.2011.32.8.2813
- A. Muhammad, M. I .A. Mutalib, T. Murugesan, and A. Shafeeq, "Thermophysical properties of aqueous piperazine and aqueous (N-Methyldiethanolamine+Piperazine) solutions at temperatures (298.15 to 338.15) K", Journal of Chemical & Engineering Data, Vol. 54, 2009, pp. 2317-2321. https://doi.org/10.1021/je9000069
-
A. Veawab, P. Tontiwachwuthikul, A. Aroonwilas, and A. Chakma, "Performance and cost analysis for
$CO_2$ capture from flue gas streams: absorption and regeneration aspects", Greenhouse Gas Control Technol., Vol. 1, 2003, pp. 127-132. -
C. Alie, L. Backham, E. Croiset, and P. L. Douglas, "Simulation of
$CO_2$ capture using MEA scrubbing: a flowsheet decomposition method", Energy Conversion and Management, Vol. 46, 2005, pp. 475-487. https://doi.org/10.1016/j.enconman.2004.03.003 -
K. Robinson, A. McCluskey, and M. I. Attalla, "An ATR-FTIR study on the effect of molecular structural variations on the
$CO_2$ absorption characteristics of heterocyclic amines, Part II", Chem. Phys. Chem., Vol. 13, 2012, pp. 2331-2341. https://doi.org/10.1002/cphc.201200066 -
K. Robinson, A. McCluskey, and M. I. Attalla, "The effect molecular structural variations has on the
$CO_2$ absorption characteristics of heterocyclic amines", American Chemical Society, 2012, Chapter 1, pp. 1-27. -
K. K. Li, A. Cousins, H. Yu, P. Feron, M. Tade, W. Luo, and J. Chen, "Systematic study of aqueous monoethanolamine-based
$CO_2$ capture process: model development and process improvement", Energy Science & Engineering, Vol. 4, No. 1, 2016, pp. 23-39. https://doi.org/10.1002/ese3.101 -
J. H. Choi, S. H. Yun, Y. E. Kim, Y. I. Yoon, and S. C. Nam, "The Effect of Functional Group Position of the Piperidine Derivatives on the
$CO_2$ Absorption Characteristics in the ($H_2O$ -Piperidine-$CO_2$ ) System", Korean Chem. Eng. Res., Vol. 53, No. 1. 2015, pp. 57-63. https://doi.org/10.9713/kcer.2015.53.1.57 -
I. Kim and H. F. Svendsen, "Heat of Absorption of Carbon Dioxide (
$CO_2$ ) in Monoethanolamine (MEA) and 2-(Aminoethyl)ethanolamine (AEEA) Solutions", Ind. Eng. Chem. Res., Vol. 46, No. 17, 2007, pp. 5803-5809. https://doi.org/10.1021/ie0616489