참고문헌
- S. Wood and A. T. Harris, "Porous burners for lean-burn applications", Progress in Energy and Combustion Science, Vol. 34, 2008, pp. 667-684. https://doi.org/10.1016/j.pecs.2008.04.003
- I. Cerri, M. Pavese, G. Saracco, and V. Specchia, "Premixed metal fibre burners based on a Pd catalyst", Catalysis Today, Vol. 83, 2003, pp. 19-31. https://doi.org/10.1016/S0920-5861(03)00213-X
- P. H. Lee, S. S. Hwang, and J. K. Kim, "Combustion characteristics of premixed combustor using nickel based metal foam", Journal of the Korean Society of Combustion, Vol. 22, 2017, pp. 42-49.
- M. M. Abdelaal, M. K. El-Riedy, and A. M. El-Nahas, "Effect of oxygen enriched air on porous radiant burner performance and NO emissions", Experimental Thermal and Fluid Science, Vol. 45, 2013, pp. 163-168. https://doi.org/10.1016/j.expthermflusci.2012.10.021
- K. Qiu and A. C. S. Hayden, "Premixed gas combustion stabilized in fiber felt and its application to a novel radiant burner", Fuel, Vol. 85, 2006, pp. 1094-1100. https://doi.org/10.1016/j.fuel.2005.09.010
- Y. Kotani and T. Takeno, "An experimental study on stability and combustion characteristics of an excess enthalpy flame", Proceeding Combustion Institute, Vol. 19, 1982, pp. 1503-1509. https://doi.org/10.1016/S0082-0784(82)80327-5
- M. A. Mujeebu, M. Z. Abdullah, and A. A. Mohamad, "Development of energy efficient porous medium burners on surface and submerged combustion modes", Energy, Vol. 36, 2011, pp. 5132-5139. https://doi.org/10.1016/j.energy.2011.06.014
- B. J. Vogel and J. L. Ellzey, "Subadiabatic and superadiabatic performance of a two-section porous burner", Combust. Sci. and Tech, Vol. 177, 2005, pp. 1323-1338. https://doi.org/10.1080/00102200590950494
- V. Bubnovich, M. Toledo, L. Henriquez, C. Rosas, and J. Romero, "Flame stabilization between two beds of alumina balls in a porous burner", Applied Thermal Engineering, Vol. 30, 2010, pp. 92-95. https://doi.org/10.1016/j.applthermaleng.2009.04.001
- B. G. Yu, S. M. Kum, C. E. Lee, and S. R. Lee, "Combustion characteristics and thermal efficiency for for premixed porous-media types of burners", Energy, Vol. 53, 2013, pp. 343-350. https://doi.org/10.1016/j.energy.2013.02.035
- V. N. Kornilov, S. Shakariyants, and L. P. H. de Goey, "Novel burner concept for premixed surface-stabilized combustion", Proceeding of ASME Turbo Expo 2012, Vol. 2, 2012, pp. 795-801.
- A. Colorado and V. McDonell, "Surface stabilized combustion technology: An experimental evaluation of the extent of its fuel-flexibility and pollutant emissions using low and high calorific value fuels", Applied Thermal Engineering, Vol. 136, 2018, pp. 206-218. https://doi.org/10.1016/j.applthermaleng.2018.02.081
- S. A. Hashemi, M. Nikfar, and R. Motaghedifard, "Experimental study of operating range and radiation efficiency of a metal porous burner", Thermal Science, Vol. 19, 2015, pp. 11-20. https://doi.org/10.2298/TSCI120522154H
- S. A. Leonardi, R. Viskanta, and J. P. Gore, "Radiation and thermal performance measurements of a metal fiber burner", Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 73, 2002, pp. 491-501. https://doi.org/10.1016/S0022-4073(01)00201-1
- Y. Nakamura, Y. Itaya, K. Miyoshi, and M. Hasatani, "Mechanism of methane-air combustion on the surface of a porous ceramic plate", Journal of Chemical Engineering of Japan, Vol. 26, No. 2, 1993, pp. 205-211. https://doi.org/10.1252/jcej.26.205
- C. E. Arrieta and A. A. Amell, "Combustion analysis of an equimolar mixture of methane and syngas in a surface-stabilized combustion burner for household appliances", Fuel, Vol. 137, 2014, pp. 11-20. https://doi.org/10.1016/j.fuel.2014.07.079
- K. W. Cho, K. W. Han, Y. K. Lee, D. S. Noh, H. M. Yoon, K. J. Riu, and K. H. Lee, "Premixed combustion of coke oven gas in a metallic fibre mat", Fuel, Vol. 80, 2001, pp. 1033-1036. https://doi.org/10.1016/S0016-2361(00)00200-3
- UC Sandiego mechanism webpage, Available at http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html.