참고문헌
- X. Zhao and G. Lu, "Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming", Int. J. Hydrogen Energy, Vol. 41, 2016, pp. 3349-3362. https://doi.org/10.1016/j.ijhydene.2015.09.063
-
R. M. Navarro, M. C. Alvarez-Galvan, F. Rosa, and J. L. G. Fierro, "Hydrogen production by oxidative reforming of hexadecane over Ni and Pt catalysts supported on Ce/La-doped
$Al_2O_3$ ", Appl. Catal. A: Gen., Vol. 297, 2006, pp. 60-72. https://doi.org/10.1016/j.apcata.2005.08.036 - P. Ferreira-Aparicio, M. J. Benito, and J. L. Sanz, "New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers", Catal. Rev., Vol. 47, 2005, pp. 491-588. https://doi.org/10.1080/01614940500364958
-
D. W. Jeong, J. O. Shim, W. J. Jang, and H. S. Roh, "A Study on Pt-Na/
$CeO_2$ Catalysts for Single Stage Water Gas Shift Reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 2, 2012, pp. 111-116. https://doi.org/10.7316/KHNES.2012.23.2.111 - D. J. Seo, W. L. Yoon, K. S. Kang, and J. W. Kim, "Patent Trend for Hydrogen Production Technology by Steam Reforming of Natural Gas", Trans. of the Korean Hydrogen and New Energy Society, Vol. 18, No. 4, 2007, pp. 464-480.
- N. Chanburanasiri, A. M. Ribeiro, A. E. Rodrigues, A. Arpornwichanop, N. Laosiripojana, P. Praserthdam, and S. Assabumrungrat, "Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst", Ind. Eng. Chem. Res., Vol. 50, 2011, pp. 13662-13671. https://doi.org/10.1021/ie201226j
-
A. E. Awadallah, D. S. El-Desouki, N. A. K. Aboul-Gheit, A. H. Ibrahim, and A. K. Aboul-Gheit, "Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to
$CO_x$ -free hydrogen and carbon nanomaterials", Int. J. Hydrogen Energy, Vol. 41, 2016, pp. 16890-16902. https://doi.org/10.1016/j.ijhydene.2016.07.081 - H. Pennemann, R. Bellinghausen, T. Westermann, and L. Mleczko, "Reforming of methane in a multistage microstructured reactor", Chem. Eng. Technol., Vol. 38, 2015, pp. 1883-1893. https://doi.org/10.1002/ceat.201500193
- W. J. Jang, D. W. Jeong, J. O. Shim, H. M. Kim, H. S. Roh, I. H. Son, and S. J. Lee, "Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application", Appl. Energy, Vol. 173, 2016, pp. 80-91. https://doi.org/10.1016/j.apenergy.2016.04.006
-
H. S. Roh, I. H. Eum, and D. W. Jeong, "Low temperature steam reforming of methane over
$Ni-Ce_{(1-x)}Zr_{(x)}O_2$ catalysts under severe conditions", Renewable Energy, Vol. 42, 2012, pp. 212-216. https://doi.org/10.1016/j.renene.2011.08.013 - H. Tian, X. Li, L. Zeng, and J. Gong, "Recent advances on the design of group VIII base-metal catalysts with encapsulated structures", ACS Catal., Vol. 5, 2015, pp. 4959-4977. https://doi.org/10.1021/acscatal.5b01221
- C. Zhang, S. Li, G. Wu, Z. Huang, Z. Han, T. Wang, and J. Gong, "Steam reforming of ethanol over skeletal Ni-based catalysts: a temperature programmed desorption and kinetic study", AIChE Journal, Vol. 60, 2013, pp. 635-644.
- X. Yu, F. Zhang, N. Wang, S. Hao, and W. Chu, "Plasmatreated bimetallic Ni-Pt catalysts derived from hydrotalcites for the carbon dioxide reforming of methane", Catal. Lett., Vol. 144, 2014, pp. 293-300. https://doi.org/10.1007/s10562-013-1130-3
- S. D. Angeli, F. G. Pilitsis, and A. A. Lemonidou, "Methane steam reforming at low temperature: effect of light alkanes' presence on coke formation", Catal. Today, Vol. 242, 2015, pp. 119-128. https://doi.org/10.1016/j.cattod.2014.05.043
-
M. Dan, M. Mihet, Z. Tasnadi-Asztalos, A. Imre-Lucaci, G. Katona, and M. D. Lazar, "Hydrogen production by ethanol steam reforming on nickel catalysts: Effect of support modification by
$CeO_2$ and$La_2O_3$ ", Fuel, Vol. 147, 2015, pp. 260-268. https://doi.org/10.1016/j.fuel.2015.01.050 - M. Dan, M. Mihet, A. R. Biris, P. Marginean, V. Almasan, and G. Borodi, "Supported nickel catalysts for low temperature methane steam reforming: comparison between metal additives and support modification", React. Kinet. Mech. Catal., Vol. 105, 2012, pp. 173-193. https://doi.org/10.1007/s11144-011-0406-0
-
H. S. Roh and K. W. Jun, "Carbon dioxide reforming of methane over Ni catalysts supported on
$Al_2O_3$ modified with$La_2O_3$ , MgO, and CaO", Catal. Surv. Asia, Vol. 12, 2008, pp. 239-252. https://doi.org/10.1007/s10563-008-9058-0 - G. Wu, S. Li, C. Zhang, T. Wang, and J. Gong, "Glycerol steam reforming over perovskite-derived nickel-based catalysts", Appl. Catal. B: Environ., Vol. 144, 2014, pp. 277-285. https://doi.org/10.1016/j.apcatb.2013.07.028
-
J. Gao, Z. Hou, J. Guo, Y. Zhu, and X. Zheng, "Catalytic conversion of methane and
$CO_2$ to synthesis gas over a$La_2O_3$ -modified$SiO_2$ supported Ni catalyst in fluidized-bed reactor", Catal. Today, Vol. 131, 2008, pp. 278-284. https://doi.org/10.1016/j.cattod.2007.10.019 -
H. M. Kim, W. J. Jang, S. Y. Yoo, J. O. Shim, K. W. Jeon, H. S. Na, Y. L. Lee, B. H. Jeon, J. W. Bae, and H. S. Roh, "Low temperature steam reforming of methane using metal oxide promoted Ni-
$Ce_{0.8}Zr_{0.2}O_2$ catalysts in a compact reformer", Int. J. Hydrogen Energy, Vol. 43, 2018, pp. 262-270. https://doi.org/10.1016/j.ijhydene.2017.11.058 -
K. Wang, X. Li, S. Ji, X. Shi, and J. J. Tang, "Effect of
$Ce_xZr_{1-x}O_2$ Promoter on Ni-Based SBA-15 Catalyst for Steam Reforming of Methane", Energy and Fuels, Vol. 23, 2009, pp. 25-31. https://doi.org/10.1021/ef800553b - M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka, and A. K. Datye, "The Role of Pore Size and Structure on the Thermal Stability of Gold Nanoparticles within Mesoporous Silica", J. Phys. Chem. B, Vol. 109, 2005, pp. 2873-2880. https://doi.org/10.1021/jp045917p
-
W. J. Jang, D. W. Jeong, J. O. Shim, H. S. Roh, I. H. Son, and S. J. Lee, "
$H_2$ and CO production over a stable Ni-MgO-$Ce_{0.8}Zr_{0.2}O_2$ catalyst from$CO_2$ reforming of$CH_4$ ", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 4508-4512. https://doi.org/10.1016/j.ijhydene.2013.01.196 -
D. W. Jeong, W. J. Jang, J. O. Shim, H. S. Roh, I. H. Son, and S. J. Lee, "The effect of preparation method on the catalytic performance over superior MgO-promoted Ni-
$Ce_{0.8}Zr_{0.2}O_2$ catalyst for$CO_2$ reforming of$CH_4$ ", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 13649-13654. https://doi.org/10.1016/j.ijhydene.2013.08.026 - L. Pino, A. Vita, F. Cipitii, M. Lagana, and V. Recupero, "Hydrogen production by methane tri-reforming process over Ni-ceria catalysts: effect of La-doping", Appl. Catal. B: Environ., Vol. 104, 2011, pp. 64-73. https://doi.org/10.1016/j.apcatb.2011.02.027
-
C. Batiot-Dupeyrat, G. Valderrama, A. Meneses, F. Martinez, J. Barrault, and J. M. Tatibouet, "Pulse study of
$CO_2$ reforming of methane over$LaNiO_3$ ", Appl. Catal. A: Gen., Vol. 248, 2003, pp. 143-151. https://doi.org/10.1016/S0926-860X(03)00155-8 -
J. E. Min, Y. J. Lee, H. G. Park, C. Zhang, and K. W. Jun, "Carbon dioxide reforming of methane on Ni-MgO-
$Al_2O_3$ catalysts prepared by sol-gel method: Effects of Mg/Al ratios", J. Indus. Eng. Chem., Vol. 26, 2015, pp. 375-383. https://doi.org/10.1016/j.jiec.2014.12.012