DOI QR코드

DOI QR Code

Histological Comparative Study of Rabbit Maxillary Sinus Augmentation with Bio-Oss and β-TCP

Bio-Oss와 β-TCP를 이용한 토끼 상악동 거상술 후의 조직학적 비교 연구

  • Moon, Yong-Suk (Department of Anatomy, College of Medicine, Catholic University of Daegu)
  • 문용석 (대구가톨릭대학교 의과대학 해부학교실)
  • Received : 2018.08.03
  • Accepted : 2018.10.15
  • Published : 2018.10.30

Abstract

The purpose of this animal study was to evaluate, by histological analysis, bone regeneration in rabbit maxillary sinuses with an anorganic bovine graft (Bio-Oss) and a ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) grafting. Bilateral sinus augmentation procedures were performed in 12 adult male rabbits. Rectangular replaceable bony windows were made with a piezoelectric thin saw insert. In the Bio-Oss group, Bio-Oss was grafted and in the ${\beta}-TCP$ group, ${\beta}-TCP$ was grafted and covered by replaceable bony windows. The animals were sacrificed at 2, 4, and 8 weeks after the surgical procedure. The augmented sinuses were evaluated by histomorphometric analysis using hematoxylin-eosin, Masson trichrome, and tartrate-resistant acid phosphatase stains and also by immunohistochemical analysis of proliferating cell nuclear antigen (PCNA), type I collagen, and osteocalcin content. Histologically, new bone formation was found on the surface of Bio-Oss and ${\beta}-TCP$ particles from 2 weeks and continued to 8 weeks. Significant higher new bone formation was revealed in the ${\beta}-TCP$ group than in the Bio-Oss group at 8 weeks. The amount of graft materials was significantly decreased in the ${\beta}-TCP$ group and the number of osteoclasts was significantly increased in the ${\beta}-TCP$ group from 4 to 8 weeks. Immunoreactivity to PCNA was reduced at 8 weeks. The expression of type I collagen was significantly increased in the ${\beta}-TCP$ group at 2 weeks, but was significantly increased in the Bio-Oss group at 8 weeks. Immunoreactivity to osteocalcin was increased from 2 to 8 weeks. These histological results can help in the selection of graft materials for implants. Both Bio-Oss and ${\beta}-TCP$ are proven graft materials, however, these results indicate that ${\beta}-TCP$ showed better bone regeneration results in rabbit maxillary sinus augmentation.

본 연구는 토끼의 상악동에 Bio-Oss와 ${\beta}-TCP$를 이식한 후 골 재생 과정을 조직학적으로 비교하기 위하여 수행되었다. 12마리의 수컷 토끼를 4마리씩 3군으로 구분하였다. 토끼의 양쪽 상악동 점막을 거상한 후 한쪽은 Bio-Oss를 이식하였고, 다른 쪽은 ${\beta}-TCP$를 이식한 후 본래의 골편으로 창을 봉합하였다. 2주, 4주 및 8주 후에 토끼를 희생시키고 조직절편을 만든 후 Bio-Oss군과 ${\beta}-TCP$군의 골 재생 양상을 비교하였다. 조직계측학적 분석을 위하여 각각의 조직절편에 hematoxylin-eosin, Masson trichrome 및 tartrate-resistant acid phosphatase 염색을 하였고, proliferating cell nuclear antigen (PCNA), type I collagen 및 osteocalcin의 발현 양상을 비교하기 위하여 면역조직화학 염색을 하였다. 광학현미경 시야에서 계측프로그램을 이용하여 계측하고 분석하여 다음과 같은 결과를 얻었다. Bio-Oss군과 ${\beta}-TCP$군 모두 2주군에서 초기 골 형성이 시작되었고, 4주군에서는 각 이식재 입자의 표면에 형성된 다량의 신생골이 관찰되었으며, 8주군에서는 신생골의 골량이 더 증가되어 있었고 층판골과 골수조직도 관찰되었다. 신생골의 양은 4주군까지 두 군이 비슷하였으나, 8주군에서는 ${\beta}-TCP$군에서 유의한 증가가 계측되었다. 이식재의 양은 4주군부터 8주군까지 ${\beta}-TCP$군에서 유의하게 감소되었으며, 파골세포의 수는 4주군에서 8주군까지 ${\beta}-TCP$군에서 유의하게 증가되어 있었다. PCNA에 대한 면역반응성은 8주군에서 감소되었지만 두 군간의 유의한 변화는 없었다. Type I collagen의 발현은, 2주군에서는 ${\beta}-TCP$군에서 유의하게 증가되었지만, 8주군에서는 Bio-Oss군에서 유의한 증가가 관찰되었다. Osteocalcin에 대한 면역반응성은 8주까지 증가되었으며 두 군간의 유의한 차이는 없었다. 이러한 조직학적 결과들은 임플란트를 위한 이식재의 선택에 도움을 줄 수 있다. 이상의 결과들을 종합하면 Bio-Oss와 ${\beta}-TCP$는 모두 검증된 이식재 이지만, 토끼의 상악동 거상술에서는 ${\beta}-TCP$가 좀 더 우수한 골 재생 결과를 보였다.

Keywords

References

  1. Ayranci, F., Gungormus, M., Omezli, M. M. and Gundogdu, B. 2015. The effect of alendronate on various graft materials used in maxillary sinus augmentation: A rabbit study. Iran. Red. Crescent Med. J. 17, e33569.
  2. Baron, R., Neff, L., Tran Van, P., Nefussi, J. R. and Vignery, A. 1986. Kinetic and cytochemical identification of osteoclast precursors and their differentiation into multinucleated osteoclasts. Am. J. Pathol. 122, 363-378.
  3. Boyne, P. J. and James, R. A. 1980. Grafting of the maxillary sinus floor with autogenous marrow and bone. J. Oral Maxillofac. Surg. 38, 613-616.
  4. Desbois, C. and Karsenty, G. 1995. Osteocalcin cluster. Implications for functional studies. J. Cell Biochem. 57, 379-383.
  5. Garcia, R. L., Coltrera, M. D. and Gown, A. M. 1989. Analysis of proliferative grade using anti-PCNA/cyclin monoclonal antibodies in fixed, embedded tissues. Comparison with flow cytometric analysis. Am. J. Pathol. 134, 733-739.
  6. Han, C. P., Kok, L. F., Wang, P. H., Wu, T. S., Tyan, Y. S., Cheng, Y. W., Lee, M. Y. and Yang, S. F. 2009. Scoring of p16(INK4a) immunohistochemistry based on independent nuclear staining alone can sufficiently distinguish between endocervical and endometrial adenocarcinomas in a tissue microarray study. Mod. Pathol. 22, 797-806. https://doi.org/10.1038/modpathol.2009.31
  7. Henriksen, K. L., Rasmussen, B. B., Lykkesfeldt, A. E., Moller, S., Ejlertsen, B. and Mouridsen, H. T. 2007. Semi-quantitative scoring of potentially predictive markers for endocrine treatment of breast cancer: a comparison between whole sections and tissue microarrays. J. Clin. Pathol. 60, 397-404.
  8. Hu, Z., Peel, S. A., Ho, S. K., Sándor, G. K., Su, Y. and Clokie, C. M. 2010. The expression of bone matrix proteins induced by different bioimplants in a rabbit sinus lift model. J. Biomed. Mater. Res. A. 95, 1048-1054.
  9. Jensen, S. S., Broggini, N., Hjorting-Hansen, E., Schenk, R. and Buser, D. 2006. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-TCP. A histologic and histomorphometric study in the mandibles of minipigs. Clin. Oral Implants Res. 17, 237-243.
  10. Jensen, S. S., Aaboe, M., Pinholt, E. M., Hjorting-Hansen, E., Melsen, F. and Ruyter, I. E. 1996. Tissue reaction and material characteristics of four bone substitutes. Int. J. Oral Maxillofac. Implants 11, 55-66.
  11. Joo, M. J., Cha, J. K., Lim, H. C., Choi, S. H. and Jung, U. W. 2017. Sinus augmentation using rhBMP-2-loaded synthetic bone substitute with simultaneous implant placement in rabbits. J. Periodontal. Implant Sci. 47, 86-95.
  12. Kumlien, J. and Schiratzki, H. 1985. The vascular arrangement of the sinus mucosa. A study in rabbits. Acta Otolaryngol. 99, 122-132.
  13. Lu, J., Descamps, M., Dejou, J., Koubi, G., Hardouin, P., Lemaitre, J. and Proust, J. P. 2002. The biodegradation mechanism of calcium phosphate biomaterials in bone. J. Biomed. Mater. Res. 63, 408-412. https://doi.org/10.1002/jbm.10259
  14. Marks, S. C. Jr. and Popoff, S. N. 1988. Bone cell biology: The regulation of development, structure, and function in the skeleton. Am. J. Anat. 183, 41-44.
  15. Maurizio, P. and Gian, A. F. 1999. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: A histologic long-term report of 20 cases in humans. Int. J. Oral Maxillofac. Implants 14, 835-840.
  16. Minkin, C. 1982. Bone acid phosphatase: Tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif. Tissue Int. 34, 285-290.
  17. Moskow, B. S. and Lubarr, A. 1983. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case. J. Periodontol. 54, 455-462. https://doi.org/10.1902/jop.1983.54.8.455
  18. Ogose, A., Hotta, T., Hatano, H., Kawashima, H., Tokunaqa, K., Endo, N. and Umezu, H. 2002. Histological examination of ${\beta}$-TCP graft in human femur. J. Biomed. Mater. Res. 63, 601-604. https://doi.org/10.1002/jbm.10380
  19. Ozyuvaci, H., Bilgic, B. and Firati, E. 2003. Radiologic and histomorphometric evaluation of maxillary sinus grafting with alloplastic graft materials. J. Periodontol. 74, 909-915. https://doi.org/10.1902/jop.2003.74.6.909
  20. Park, J. W., Jang, J. H., Bae, S. R., An, C. H. and Suh, J. Y. 2009. Bone formation with various bone graft substitutes in critical-sized rat calvarial defect. Clin. Oral Implants Res. 20, 372-378. https://doi.org/10.1111/j.1600-0501.2008.01602.x
  21. Park, S. H., Choi, H., Lee, S. B., Zhang, C., Otgonbold, J., Cho, J. G. and Han, J. S. 2015. A rabbit maxillary sinus model with simultaneous customized-implant placement: Comparative microscopic analysis for the evaluation of surface-treated implants. Microse. Res. Tech. 78, 697-706.
  22. Prelich, G., Tan, C. K., Kostura, M., Mathews, M. B., So, A. G., Downey, K. M. and Stillman, B. 1987. Functional identity of proliferating cell nuclear antigen and a DNA polymerase-delta auxiliary protein. Nature 326, 517-520. https://doi.org/10.1038/326517a0
  23. Saffar, J. L., Colombier, M. L. and Detienville, R. 1990. Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans. J. Periodontol. 61, 209-216. https://doi.org/10.1902/jop.1990.61.4.209
  24. Saito, M., Shimizu, H., Beppu, M. and Takagi, M. 2000. The role of ${\beta}$-tricalcium phosphate in vasculized periosteum. J. Orthop. Sci. 5, 275-282. https://doi.org/10.1007/s007760050163
  25. Sato, M., Yasui, N., Nakase, T., Kawahata, H., Sugimoto, M., Hirota, S., Kitamura, Y., Nomura, S. and Ochi, T. 1998. Expression of bone matrix proteins mRNA during distraction osteogenesis. J. Bone Miner. Res. 13, 1221-1231.
  26. Schlegel, K. A., Fichtner, G., Schultze-Mosgau, S. and Wiltfang, J. 2003. Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. Int. J. Oral Maxillofac. Implants 18, 53-58.
  27. Smiler, D. G., Johnson, P. W., Lozada, J. L. and Misch, C. 1992. Sinus lift grafts and endosseous implants: Treatment of the atrophic posterior maxilla. Dent. Clin. North Am. 36, 151-186.
  28. Szabo', G., Suba, Z., Hraba'k, K., Baraba's, J. and Ne'meth, Z. 2001. Autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevations (2-and 3-dimensional computed tomographic, histologic, and histomorp hometric evaluations): preliminary results. Int. J. Oral Maxillofac. Implants 16, 681-692.
  29. Tadic, D. and Epple, M. 2004. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25, 987-994. https://doi.org/10.1016/S0142-9612(03)00621-5
  30. Tadjoedin, E. S., de Lange, G. L., Bronckers, A. L., Lyaruu, D. M. and Burger, E. H. 2003. Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphomeritical study of five cases. J. Clin. Periodontol. 30, 261-270. https://doi.org/10.1034/j.1600-051X.2003.01099.x
  31. Toshihisa, K. 1998. Cbfal/Pebp2aA, A key factor for osteoblast differentiation. Cell Technol. 17, 344-348.
  32. van den Bergh, J. P., ten Bruggenkate, C. M., Krekeler, G. and Tuinzing, D. B. 1998. Sinus floor elevation and grafting with autogenous iliac crest bone. Clin. Oral Implants Res. 9, 429-435. https://doi.org/10.1034/j.1600-0501.1996.090608.x
  33. Watanabe, K., Niimi, A and Ueda, M. 1999. Autogenous bone graft in the rabbit maxillary sinus. Oral Surg. Oral Med. Oral Radiol. Endod. 88, 26-32. https://doi.org/10.1016/S1079-2104(99)70189-7
  34. Winn, S. R., Uludag, H. and Hollinger, J. O. 1999. Carrier systems for bone morphogenetic proteins. Clin. Orthop. Relat. Res. 367 Suppl, S95-106.
  35. Xu, H., Shimizu, Y. and Ooya, K. 2005. Histomorphometric study of the stability of newly formed bone after elevation of the floor of the maxillary sinus. Br. J. Oral Maxillofac. Surg. 43, 493-499. https://doi.org/10.1016/j.bjoms.2005.02.001
  36. Yasui, N., Sato, M., Ochi, T., Kimura, T., Kawahata, H., Kitamura, Y. and Nomura, S. 1997. Three modes of ossification during distraction osteogenesis in the rat. J. Bone Joint Surg. Br. 79, 824-830. https://doi.org/10.1302/0301-620X.79B5.7423
  37. Yildirim, M., Spiekermann, H., Biesterfeld, S. and Edelhoff, D. 2000. Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin. Oral Implants Res. 11, 217-229. https://doi.org/10.1034/j.1600-0501.2000.011003217.x