DOI QR코드

DOI QR Code

Effects of Cortisol on Endoplasmic Reticulum-stress, Apoptosis, and Autophagy in Mouse Muscle C2C12 Cells

생쥐 근육세포에서 코티졸이 세포질세망 스트레스, 자연 세포사멸과 자가포식에 미치는 영향

  • Shin, Donghyun (Department of Animal Biotechnology, College of Agricultural and Life Sciences, Chonbuk National, University) ;
  • Kim, Kyoung Hwan (Department of Animal Science, College of Life Sciences, Pusan National University) ;
  • Lee, Ji Hyun (Department of Animal Science, College of Life Sciences, Pusan National University) ;
  • Cho, Byung-Wook (Department of Animal Science, College of Life Sciences, Pusan National University)
  • 신동현 (전북대학교 농업생명과학대학 동물생명공학과) ;
  • 김경환 (부산대학교 생명자원과학대학 동물생명자원과학과) ;
  • 이지현 (부산대학교 생명자원과학대학 동물생명자원과학과) ;
  • 조병욱 (부산대학교 생명자원과학대학 동물생명자원과학과)
  • Received : 2018.05.28
  • Accepted : 2018.09.27
  • Published : 2018.10.30

Abstract

Cortisol, a steroid hormone, functions within metabolism, immune response, and stress. Intense or prolonged physical exercise increases cortisol levels to enhance the gluconeogenesis pathway and stabilize blood glucose level. However, cortisol also exerts a negative impact on muscle function and creates a stressful environment in skeletal muscle cells. The present study investigated the function of cortisol as a stress hormone. To examine the effect of the exercise-induced hormone cortisol on skeletal muscles, C2C12 cells were cultured and treated with cortisol at different concentrations. As a result, we found that the morphology of C2C12 changed remarkably with 5 ug/ml cortisol treatment. Western blot analysis was conducted to learn whether ER-stress and autophagy were induced. We found that the expression ratio of LC3I/LC3II decreased and BiP expression increased after cortisol treatment. In addition, immunocytochemistry analysis with IER3 antibody clearly showed that apoptosis is induced after 12-hour cortisol treatment. These results indicate that cortisol treatment could induce apoptosis, ER-stress, and autophagy in muscle cells. This study would provide valuable information in the study of the effects of exercise on skeletal muscle cells and the development of additives to reduce cortisol stress.

운동 후 분비되는 스트레스 호르몬인 cortisol을 통한 근육세포에 미치는 운동 스트레스의 재현과 coritisol 처리 농도에 따른 세포사멸, 세포질세망 스트레스 및 자가포식현상과의 관련성을 검증 하였다. 마우스 근육 세포주 C2C12를 배양하여 다양한 농도의 cortisol을 12시간 처리하여 세포의 형태 변화를 관찰하고, 세포사멸 마커인 IER3의 발현을 세포면역화학법을 이용하여 확인하였다. 또한 ER-stress와 자가포식 현상의 유도 여부를 확인하기 위하여 BiP와 LC3-I/LC3-II 항체를 이용하여 웨스턴 블랏법을 통해 검증 하였다. 그 결과 cortisol의 농도가 $50{\mu}g/ml$$100{\mu}g/ml$로 증가함에 따라 IER3와 BiP 및 LC3-II의 발현량도 유의적으로 증가함을 확인 할 수 있었다. 이러한 결과는 운동 스트레스 호르몬인 cortisol이 운동 후 근육세포의 세포사멸, 세포질세망 스트레스 및 자가포식에 영향을 미침을 보여준다. 본 연구결과는 호르몬과 근육세포 간의 관련성 연구에 기여할 것으로 기대된다.

Keywords

References

  1. Arlt, A., Grobe, O., Sieke, A., Kruse, M. L., FoElsch, U. R., Schmidt, W. E. and Schafer, H. 2001. Expression of the NF-[kappa] B target gene IEX-1 (p22/PRG1) does not prevent cell death but instead triggers apoptosis in Hela cells. Oncogene 20, 69-79. https://doi.org/10.1038/sj.onc.1204061
  2. Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P. and Ron, D. 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat. Cell. Biol. 2, 326-332.
  3. Degterev, A. and Yuan, J. 2008. Expansion and evolution of cell death programmes. Nat. Rev. Mol. Cell Biol. 9, 378-390.
  4. Grobe, O., Arlt, A., Ungefroren, H., Krupp, G., Fölsch, U. R., Schmidt, W. E. and Schafer, H. 2001. Functional disruption of IEX‐1 expression by concatemeric hammerhead ribozymes alters growth properties of 293 cells. FEBS Lett. 494, 196-200. https://doi.org/10.1016/S0014-5793(01)02344-4
  5. Hackney, A. C. 2006. Stress and the neuroendocrine system: the role of exercise as a stressor and modifier of stress. Expert. Rev. Endocrinol. Metab. 1, 783-792. https://doi.org/10.1586/17446651.1.6.783
  6. He, C., Bassik, M. C., Moresi, V., Sun, K., Wei, Y., Zou, Z., An, Z., Loh, J., Fisher, Jill., Sun, Q., Korsmeyer, S., Packer, M. May, H. I., Hill, J. A., Virgin, H. W., Gilpin, C., Xiao, G., Duby, R. B., Scherer, P. E. and Levine, B. 2013. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481, 511-515.
  7. Hill, E. E., Zack, E., Battaglini, C., Viru, M., Viru, A. and Hackney, A. C. 2008. Exercise and circulating cortisol levels: the intensity threshold effect. J. Endocrinol. Invest. 31, 587-591. https://doi.org/10.1007/BF03345606
  8. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. 2000. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO. J. 19, 5720-5728. https://doi.org/10.1093/emboj/19.21.5720
  9. Kabeya, Y., Mizushima, N., Yamamoto, A., Oshitani-Okamoto, S., Ohsumi, Y. and Yoshimori, T. 2004. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 117, 2805-2812.
  10. Kondratyev, A. D., Chung, K. N. and Jung, M. O. 1996. Identification and characterization of a radiation-inducible glycosylated human early-response gene. Cancer Res. 56, 1498-1502.
  11. Kumar, R., Kobayashi, T., Warner, G. M., Wu, Y., Salisbury, J. L., Lingle, W. and Pittelkow, M. R. 1998. A novel immediate early response gene, IEX-1, is induced by ultraviolet radiation in human keratinocytes. Biochem. Biophys. Res. Commun. 253, 336-341. https://doi.org/10.1006/bbrc.1998.9692
  12. Malhotra, J. D. and Kaufman, R. J. 2007. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword?. Antioxid. Redox Signal. 9, 2277-2294.
  13. McMurray, R. G. and Hackney, A. C. 2000. Endocrine responses to exercise and training. Exercise and Sport Science 135-161.
  14. Nair, U. and Klionsky, D. J. 2011. Activation of autophagy is required for muscle homeostasis during physical exercise. Autophagy 7, 1405-1406. https://doi.org/10.4161/auto.7.12.18315
  15. Nardocci, G., Navarro, C., Cortes, P. P., Imarai, M., Montoya, M., Valenzuela, B., Jara, P., Castillo, C. A. and Fernandez, R. 2014. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish. Shellfish. Immunol. 40, 531-538.
  16. Oslowski, C. M. and Urano, F. 2011. Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Meth. Enzymol. 490, 71-92.
  17. Pincus, D., Chevalier, M. W., Aragon, T., Van Anken, E., Vidal, S. E., El-Samad, H. and Walter, P. 2010. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS. Biol. 8, e1000415-e1000415.
  18. Ron, D. and Walter, P. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519-529. https://doi.org/10.1038/nrm2199
  19. Sano, R. and Reed, J. C. 2013. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta. 1833, 3460-3470.
  20. Scott, E. 2011. Cortisol and stress: How to stay healthy. Ann. N. Y. Acad. Sci. 1024, 138-146.
  21. Shen, J., Chen, X., Hendershot, L. and Prywes, R. 2002. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell. 3, 99-111.
  22. Suzuki, K., Totsuka, M., Nakaji, S., Yamada, M., Kudoh, S., Liu, Q., Sugawara, K., Yamaya, K. and Sato, K. 1999. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J. Appl. Physiol. 87, 1360-1367. https://doi.org/10.1152/jappl.1999.87.4.1360
  23. Tsujimoto, Y. and Shimizu, S. 2005. Another way to die: autophagic programmed cell death. Cell Death Differ. 12, 1528-1534. https://doi.org/10.1038/sj.cdd.4401777
  24. Viru, A. and Viru, M. 2004. Cortisol-essential adaptation hormone in exercise. Int. J. Sports Med. 25, 461-464.
  25. Wu, M. X., Ao, Z., Prasad, K., Wu, R. and Schlossman, S. F. 1998. IEX-1L, an apoptosis inhibitor involved in NF-${\kappa}$ B-mediated cell survival. Science 281, 998-1001. https://doi.org/10.1126/science.281.5379.998
  26. Yamaguchi, H. and Wang, H. G. 2004. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem. 279, 45495-45502.