DOI QR코드

DOI QR Code

Synthesis of Polypyrrole-based Nitrogen-containing Porous Carbon Nanotubes for CO2 Adsorption

  • Liu, Jiamin (Department of Polymer Materials and Engineering, Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University) ;
  • Jin, Biao (Instrumental Analysis Center, Yanbian University) ;
  • Meng, Long-Yue (Department of Polymer Materials and Engineering, Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University) ;
  • Lee, Kyung-Hee (Research Institute of Standars and Analysis, Inha University)
  • Received : 2018.01.10
  • Accepted : 2018.03.07
  • Published : 2018.10.31

Abstract

Keywords

References

  1. Bai BC, Kim EA, Lee CW, Lee YS, Im JS. Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for $CO_2$ adsorption. Appl Surf Sci, 353, 158 (2015). https://doi.org/10.1016/j.apsusc.2015.06.046.
  2. Xing W, Liu C, Zhou ZY, Zhang L, Zhou J, Zhuo SP, Yan ZF, Gao H, Wang GQ, Qiao SZ. Superior $CO_2$ uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ Sci, 5, 7323 (2012). https://doi.org/10.1039/c2ee21653a.
  3. Jeon DH, Bae ST, Park SJ. Preparation and characterization of chemically activated carbon materials for $CO_2$ capture. Carbon Lett, 17, 85 (2016). https://doi.org/10.5714/cl.2016.17.1.085.
  4. Ullah R, Atilhan M, Anaya B, Al-Muhtaseb S, Aparicio S, Patel H, Thirion D, Yavuz CT. Investigation of Ester and Amide Linker based porous organic polymers for carbon dioxide capture and separation at wide temperatures and pressures. ACS Appl Mater Interfaces, 8, 20772 (2016). https://doi.org/10.1021/acsami.6b05927.
  5. Heo YJ, Le MUT, Park SJ. Investigation of carbon dioxide adsorption by nitrogen-doped carbons synthesized from cubic MCM-48 mesoporous silica. Carbon Lett, 18, 62 (2016). https://doi.org/10.5714/cl.2016.18.062.
  6. Yu JM, Xie LH, Li JR, Ma YG, Seminario JM, Balbuena PB. $CO_2$ capture and separations using MOFs: computational and experimental studies. Chem Rev, 117, 9674 (2017). https://doi.org/10.1021/acs.chemrev.6b00626.
  7. Basnayake SA, Su J, Zou XD, Balkus KJ. Carbonate-based zeolitic imidazolate frame work for highly selective $CO_2$ capture. Inorg Chem, 54, 1816 (2015). https://doi.org/10.1021/ic5027174.
  8. Kim S, Lee YM. Rigid and microporous polymers for gas separation membranes. Prog Polym Sci, 43, 1 (2015). https://doi.org/10.1016/j.progpolymsci.2014.10.005.
  9. Yuan H, Meng LY, Park SJ. KOH-activated graphite nanofibers as $CO_2$ adsorbents. Carbon Lett, 19, 99 (2016). https://doi.org/10.5714/cl.2016.19.099.
  10. Hwang DG, Jeong E, Lee SG. Density functional theory study of $NH_4$ and $CO_2$ adsorption by fluorinated graphene. Carbon Lett, 20, 81 (2016). https://doi.org/10.5714/cl.2016.20.081.
  11. Chandra V, Yu SU, Kim SH, Yoon YS, Kim DY, Kwon AH, Meyy-appan M, Kim KS. Highly selective $CO_2$ capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chem Commun, 48, 735 (2012). https://doi.org/10.1039/c1cc15599g.
  12. Wang Q, Luo JZ, Zhong ZY, Borgna A. $CO_2$ capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci, 4, 42 (2011). https://doi.org/10.1039/c0ee00064g.
  13. Kim JH, Kim DY, Jeong E, Lee YS. Characteristics of fluorinated CNTs added carbon foams. Appl Surf Sci, 360, 1009 (2016). https://doi.org/10.1016/j.apsusc.2015.11.111.
  14. Tourani S, Khorasheh F, Rashidi AM, Safekordi AA. Hydro-purification of crude terephthalic acid using palladium catalyst supported on multi-wall carbon nanotubes. J Ind Eng Chem, 28, 202 (2015). https://doi.org/10.1016/j.jiec.2015.02.015.
  15. Kim HS, Jung Y, Kim S. Capacitance behaviors of conducting polymer-coated graphene nanosheets composite electrodes containing multi-walled carbon nanotubes as additives. Carbon Lett, 23, 63 (2017). https://doi.org/10.5714/CL.2017.23.063.
  16. Hao GP, Li WC, Qian D, Lu AH. Rapid synthesis of nitrogendoped porous carbon monolith for $CO_2$ capture. Adv Mater, 22, 853 (2010). https://doi.org/10.1002/adma.200903765.
  17. Fatemi S, Vesali-Naseh M, Cyrus M, Hashemi J. Improving $CO_2$/$NH_4$ adsorptive selectivity of carbon nanotubes by functionalization with nitrogen-containing groups. Chem Eng Res Des, 89, 1669 (2011). https://doi.org/10.1016/j.cherd.2010.10.002.
  18. Wang MR, Hu LT, Lei XK, Fang J, Lai YQ. Pre-surface functionalization of commercial conductive carbon for effective N doping as a highly efficient electrocatalyst. Mater Lett, 207, 33 (2017). https://doi.org/10.1016/j.matlet.2017.07.047.
  19. Ren XM, Li H, Chen J, Wei LJ, Modak A, Yang HQ, Yang QH. N-doped porous carbons with exceptionally high $CO_2$ selectivity for $CO_2$ capture. Carbon, 114, 473 (2017). https://doi.org/10.1016/j.carbon.2016.12.056.
  20. Adeniran B, Mokaya R. Is N-doping in porous carbons beneficial for $CO_2$ storage? Experimental demonstration of the relative effects of pore size and N-doping. Chem Mater, 28, 994 (2016). https://doi.org/10.1021/acs.chemmater.5b05020.
  21. Molyanyan E, Aghamiri S, Talaie MR, Iraji N. Experimental study of pure and mixtures of $CO_2$ and $NH_4$ adsorption on modified carbon nanotubes. Int J Environ Sci Technol, 13, 2001 (2016). https://doi.org/10.1007/s13762-016-0989-0.
  22. Li Y, Zou B, Hu CW, Cao MH. Nitrogen-doped porous carbon nanofiber webs for efficient $CO_2$ capture and conversion. Carbon, 99, 79 (2016). https://doi.org/10.1016/j.carbon.2015.11.074.
  23. Wickramaratne NP, Xu JT, Wang M, Zhu L, Dai LM, Jaroniec M. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and $CO_2$ adsorption. Chem Mater, 26, 2820 (2014). https://doi.org/10.1021/cm5001895.
  24. Babu DJ, Bruns M, Schneider R, Gerthsen D, Schneider JJ. Understanding the influence of N-doping on the $CO_2$ adsorption characteristics in carbon nanomaterials. J Phys Chem C, 121, 616 (2017). https://doi.org/10.1021/acs.jpcc.6b11686.
  25. Geng Z, Xiao QF, Lv H, Li B, Wu HB, Lu YF, Zhang CM. One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective $CO_2$ capture. Sci Rep, 6, 30049 (2016). https://doi.org/10.1038/srep30049.
  26. To JWF, He JJ, Mei JG, Haghpanah R, Chen Z, Kurosawa T, Chen SC, Bae WG, Pan LJ, Tok JBH, et al. Hierarchical N-doped carbon as $CO_2$ adsorbent with high $CO_2$ selectivity from rationally designed polypyrrole precursor. J Am Chem Soc, 138, 1001 (2016). https://doi.org/10.1021/jacs.5b11955.
  27. Ma XC, Li LQ, Wang SB, Lu MM, Li HL, Ma WW, Keener TC. Ammonia-treated porous carbon derived from ZIF-8 for enhanced $CO_2$ adsorption. Appl Surf Sci, 369, 390 (2016). https://doi.org/10.1016/j.apsusc.2016.01.274.
  28. Lim G, Lee KB, Ham HC. Effect of N-containing functional groups on $CO_2$ adsorption of carbonaceous materials: a density functional theory approach. J Phys Chem C, 120, 8087 (2016). https://doi.org/10.1021/acs.jpcc.5b12090.