DOI QR코드

DOI QR Code

WEIGHTED COMPOSITION OPERATORS ON NACHBIN SPACES WITH OPERATOR-VALUED WEIGHTS

  • Klilou, Mohammed (Department of Mathematics Team GrAAF, Laboratory LMSA, Center CeReMAR Faculty of Sciences, Mohammed V University in Rabat) ;
  • Oubbi, Lahbib (Department of Mathematics Team GrAAF, Laboratory LMSA, Center CeReMAR Ecole Normale Superieure, Mohammed V University in Rabat)
  • Received : 2017.03.09
  • Accepted : 2018.03.09
  • Published : 2018.10.31

Abstract

Let A be a normed space, ${\mathcal{B}}(A)$ the algebra of all bounded operators on A, and V a family of strongly upper semicontinuous functions from a Hausdorff completely regular space X into ${\mathcal{B}}(A)$. In this paper, we investigate some properties of the weighted spaces CV (X, A) of all A-valued continuous functions f on X such that the mapping $x{\mapsto}v(x)(f(x))$ is bounded on X, for every $v{\in}V$, endowed with the topology generated by the seminorms ${\parallel}f{\parallel}v={\sup}\{{\parallel}v(x)(f(x)){\parallel},\;x{\in}X\}$. Our main purpose is to characterize continuous, bounded, and locally equicontinuous weighted composition operators between such spaces.

Keywords

References

  1. K. D. Bierstedt, Gewichtete Raume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I, J. Reine Angew. Math. 259 (1973), 186-210.
  2. K. D. Bierstedt, Tensor products of weighted spaces, in Function spaces and dense approximation (Proc. Conf., Univ. Bonn, Bonn, 1974), 26-58. Bonn. Math. Schriften, 81, Inst. Angew. Math., Univ. Bonn, Bonn, 1975.
  3. K. D. Bierstedt and J. Bonet, Some recent results on V C(X), in Advances in the theory of Frechet spaces (Istanbul, 1988), 181-194, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 287, Kluwer Acad. Publ., Dordrecht, 1989.
  4. K. D. Bierstedt and J. Bonet, Completeness of the (LB)-spaces V C(X), Arch. Math. (Basel) 56 (1991), no. 3, 281-285. https://doi.org/10.1007/BF01190216
  5. K. D. Bierstedt and J. Bonet, Weighted (LF)-spaces of continuous functions, Math. Nachr. 165 (1994), 25- 48. https://doi.org/10.1002/mana.19941650104
  6. K. D. Bierstedt, R. Meise, and W. H. Summers, A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 272 (1982), no. 1, 107-160. https://doi.org/10.1090/S0002-9947-1982-0656483-9
  7. J. Bonet, On weighted inductive limits of spaces of continuous functions, Math. Z. 192 (1986), no. 1, 9-20. https://doi.org/10.1007/BF01162015
  8. J. Bonet, P. Domanski, and M. Lindstrom, Pointwise multiplication operators on weighted Banach spaces of analytic functions, Studia Math. 137 (1999), no. 2, 177- 194.
  9. J. Bonet and E. Wolf, A note on weighted Banach spaces of holomorphic functions, Arch. Math. (Basel) 81 (2003), no. 6, 650-654. https://doi.org/10.1007/s00013-003-0568-8
  10. W. Govaerts, Homomorphisms of weighted algebras of continuous functions, Ann. Mat. Pura Appl. (4) 116 (1978), 151-158. https://doi.org/10.1007/BF02413872
  11. J. E. Jamison and M. Rajagopalan, Weighted composition operator on C(X, E), J. Operator Theory 19 (1988), no. 2, 307-317.
  12. J. S. Jeang and N. C. Wong, Weighted composition operators of $C_0$(X)'s, J. Math. Anal. Appl. 201 (1996), no. 3, 981-993. https://doi.org/10.1006/jmaa.1996.0296
  13. L. A. Khan and A. B. Thaheem, Operator-valued multiplication operators on weighted function spaces, Demonstratio Math. 35 (2002), no. 3, 599-605. https://doi.org/10.1515/dema-2002-0317
  14. M. Klilou and L. Oubbi, Multiplication operators on generalized weighted spaces of continuous functions, Mediterr. J. Math. 13 (2016), no. 5, 3265-3280. https://doi.org/10.1007/s00009-016-0684-x
  15. K. Kour and B. Singh, WCOs on non-locally convex weighted spaces of continuous functions, J. Indian Math. Soc. (N.S.) 66 (1999), no. 1-4, 17-25.
  16. W. Lusky, On the structure of $Hv_0$(D) and $hv_0$(D), Math. Nachr. 159 (1992), 279-289. https://doi.org/10.1002/mana.19921590119
  17. W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), no. 2, 309-320. https://doi.org/10.1112/jlms/51.2.309
  18. J. S. Manhas and R. K. Singh, Weighted composition operators on nonlocally convex weighted spaces of continuous functions, Anal. Math. 24 (1998), no. 4, 275-292. https://doi.org/10.1007/BF02771088
  19. L. Nachbin, Weighted approximation for algebras and modules of continuous functions: Real and self-adjoint complex cases, Ann. of Math. (2) 81 (1965), 289-302. https://doi.org/10.2307/1970617
  20. L. Nachbin, Elements of Approximation Theory, Van Nostrand Mathematical Studies, No. 14, D. Van Nostrand Co., Inc., Princeton, NJ, 1967.
  21. L. Oubbi, Weighted algebras of continuous functions, Results Math. 24 (1993), no. 3-4, 298-307. https://doi.org/10.1007/BF03322338
  22. L. Oubbi, On different types of algebras contained in CV (X), Bull. Belg. Math. Soc. Simon Stevin 6 (1999), no. 1, 111-120.
  23. L. Oubbi, Weighted composition operators on non-locally convex weighted spaces, Rocky Mountain J. Math. 35 (2005), no. 6, 2065-2087. https://doi.org/10.1216/rmjm/1181069629
  24. J. B. Prolla, Weighted spaces of vector-valued continuous functions, Ann. Mat. Pura Appl. (4) 89 (1971), 145-157. https://doi.org/10.1007/BF02414945
  25. J. B. Prolla, Approximation of Vector Valued Functions, North-Holland Publishing Co., Amsterdam, 1977.
  26. W. M. Ruess and W. H. Summers, Compactness in spaces of vector valued continuous functions and asymptotic almost periodicity, Math. Nachr. 135 (1988), 7-33. https://doi.org/10.1002/mana.19881350102
  27. C. Shekhar and B. S. Komal, Multiplication operators on weighted spaces of continuous functions with operator-valued weights, Int. J. Contemp. Math. Sci. 7 (2012), no. 37-40, 1889-1894.
  28. B. Singh and K. Kour, On weighted composition operators on non-locally convex function spaces, Indian J. Pure Appl. Math. 28 (1997), no. 11, 1505-1512.
  29. R. K. Singh and W. H. Summers, Composition operators on weighted spaces of continuous functions, J. Austral. Math. Soc. Ser. A 45 (1988), no. 3, 303-319.
  30. W. H. Summers, The general complex bounded case of the strict weighted approximation problem, Math. Ann. 192 (1971), 90-98. https://doi.org/10.1007/BF02052753
  31. W. H. Summers, The bounded case of the weighted approximation problem, in Functional analysis and applications (Proc. Sympos. Analysis, Univ. Fed. Pernambuco, Recife, 1972), 177- 183. Lecture Notes in Math., Vol 384, Springer, Berlin, 1974.