DOI QR코드

DOI QR Code

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine (Department of Mathematics Cumhuriyet University) ;
  • Rehman, Nadeem ur (Department of Mathematics Aligarh Muslim University)
  • Received : 2017.11.14
  • Accepted : 2018.04.11
  • Published : 2018.10.31

Abstract

Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

Keywords

References

  1. M. Ashraf, On symmetric bi-derivations in rings, Rend. Istit. Mat. Univ. Trieste 31 (1999), no. 1-2, 25-36.
  2. M. Ashraf and M. R. Jamal, Traces of permuting n-additive maps and permuting n- derivations of rings, Mediterr. J. Math. 11 (2014), no. 2, 287-297. https://doi.org/10.1007/s00009-013-0298-5
  3. H. E. Bell and W. S. Martindale, III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101. https://doi.org/10.4153/CMB-1987-014-x
  4. M. Bresar, On generalized biderivations and related maps, J. Algebra 172 (1995), no. 3, 764-786. https://doi.org/10.1006/jabr.1995.1069
  5. M. Bresar, W. S. Martindale, III, and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), no. 2, 342-357. https://doi.org/10.1006/jabr.1993.1223
  6. A. Fosner, Prime and semiprime rings with symmetric skew 3-derivations, Aequat. Math. DOI 10.1007/s00010-013-0208-8.
  7. Y.-S. Jung and K.-H. Park, On prime and semiprime rings with permuting 3-derivations, Bull. Korean Math. Soc. 44 (2007), no. 4, 789-794. https://doi.org/10.4134/BKMS.2007.44.4.789
  8. Gy. Maksa, A remark on symmetric biadditive functions having nonnegative diagonal- ization, Glas. Mat. Ser. III 15(35) (1980), no. 2, 279-282.
  9. Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303-307.
  10. K. H. Park, On prime and semiprme rings with symmetyric n-derivations, J. Chung- cheong Math. Soc. 22 (2009), no. 3, 451-454.
  11. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.1090/S0002-9939-1957-0095863-0
  12. R. K. Sharma and B. Dhara, Skew-commuting and commuting mappings in rings with left identity, Results Math. 46 (2004), no. 1-2, 123-129. https://doi.org/10.1007/BF03322875
  13. J. Vukman, Symmetric bi-derivations on prime and semi-prime rings, Aequationes Math. 38 (1989), no. 2-3, 245-254. https://doi.org/10.1007/BF01840009
  14. J. Vukman, Two results concerning symmetric bi-derivations on prime rings, Aequationes Math. 40 (1990), no. 2-3, 181-189. https://doi.org/10.1007/BF02112294