DOI QR코드

DOI QR Code

Shear buckling analysis of cross-ply laminated plates resting on Pasternak foundation

  • 투고 : 2018.08.07
  • 심사 : 2018.09.22
  • 발행 : 2018.11.10

초록

This paper presents the shear buckling analysis of symmetrically laminated cross-ply plates resting on Pasternak foundation under pure in-plane uniform shear load. The classical laminated plate theory is used for the shear buckling analysis of laminated plates. The Rayleigh-Ritz method with novel plate shape functions is proposed to solve the differential equations and a computer programming is developed to obtain the shear buckling loads. Finally, the effects of the plate aspect ratios, boundary conditions, rotational restraint stiffness, translational restraint stiffness, thickness ratios, modulus ratios and foundation parameters on the shear buckling of the laminated plates are investigated.

키워드

참고문헌

  1. Aiello, M.A. and Ombres, L. (1999), "Buckling and vibrations of unsymmetric laminates resting on elastic foundations under in plane and shear forces", Compos. Struct., 44(1), 31-41. https://doi.org/10.1016/S0263-8223(98)00116-0
  2. Altunsaray, E. and Bayer, I. (2014), "Buckling of symmetrically laminated quasi-isotropic thin rectangular plates", Steel Compos. Struct., 17(3), 305-320. https://doi.org/10.12989/scs.2014.17.3.305
  3. Ashour, A.S. (2003), "Buckling and vibration of symmetric laminated composite plates with edges elastically restrained", Steel Compos. Struct., 3(6), 439-450. https://doi.org/10.12989/scs.2003.3.6.439
  4. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), "Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory", Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  5. Becheri, T., Amara, K., Bouazza, M. and Benseddiq, N. (2016), "Buckling of symmetrically laminated plates using nth-order shear deformation theory with curvature effects", Steel Compos. Struct., 21(6), 1347-1368. https://doi.org/10.12989/scs.2016.21.6.1347
  6. Biggers, S.B. and Pageau, S.S. (1994), "Shear buckling response of tailored composite plates", AIAA J., 32(5), 1100-1103. https://doi.org/10.2514/3.12107
  7. Chen, Q. and Qiao, P. (2015), "Shear buckling of rotationallyrestrained composite laminated plates", Thin Wall. Struct., 94, 147-154.
  8. Dehghan, M. and Baradaran, G.H. (2011), "Buckling and free vibration analysis of thick rectangular plates resting on elastic foundation using mixed finite element and differential quadrature method", Appl. Math. Comput., 218(6), 2772-2784. https://doi.org/10.1016/j.amc.2011.08.020
  9. Dong, J., Ma, X., Zhuge, Y. and Mills, J.E. (2017), "Shear buckling analysis of laminated plates on tensionless elastic foundations", Steel Compos. Struct., 24(6), 607-709.
  10. Iyengar, N. and Chakraborty, A. (2004), "Study of interaction curves for composite laminate subjected to in-plane uniaxial and shear loadings", Compos. Struct., 64(3-4), 307-315. https://doi.org/10.1016/j.compstruct.2003.08.014
  11. Jiang, G. and Zhang, C. (2018), "Postbuckling and nonlinear vibration of composite laminated trapezoidal plates", Steel Compos. Struct., 26(1), 17-29. https://doi.org/10.12989/SCS.2018.26.1.017
  12. Khalili, S.M.R., Abbaspour, P. and Fard, K.M. (2013), "Buckling of non-ideal simply supported laminated plate on Pasternak foundation", Appl. Math. Comput., 219(12), 6420-6430. https://doi.org/10.1016/j.amc.2012.12.056
  13. Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos. Part B: Eng., 105, 176-187. https://doi.org/10.1016/j.compositesb.2016.09.001
  14. Kiani, Y. and Mirzaei, M. (2018), "Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method", Aerosp. Sci. Technol., 77, 388-398.
  15. Kim, S.M. (2004), "Buckling and vibration of a plate on elastic foundation subjected to in-plane compression and moving loads constrained mechanical design optimization problems", Int. J. Sol. Struct., 41(20), 5647-5661. https://doi.org/10.1016/j.ijsolstr.2004.05.006
  16. Kosteletos, S. (1992), "Shear buckling response of laminated plates", Compos. Struct., 20(3), 147-154. https://doi.org/10.1016/0263-8223(92)90021-4
  17. Liu, Q., Qiao, P. and Guo, X. (2014), "Buckling analysis of restrained orthotropic plates under combined in-plane shear and axial loads and its application to web local buckling", Compos. Struct., 111, 540-552.
  18. Loughlan, J. (1999), "The influence of bend-twist coupling on the shear buckling response of thin laminated composite plates", Thin Wall. Struct., 34(2), 97-114. https://doi.org/10.1016/S0263-8231(99)00009-9
  19. Nazarimofrad, E. and Barkhordar, A. (2016), "Buckling analysis of orthotropic rectangular plate resting on Pasternak elastic foundation under biaxial in-plane loading", Mech. Adv. Mater. Struct., 23(10), 1144-1148.
  20. Pasternak, P.L. (1954), On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Cosudarstrennoe Izdatelstvo Literaturi po Stroitelstvui Arkhitekture, Moscow USSR, Russia.
  21. Qiao, P. and Huo, X. (2011), "Explicit local buckling analysis of rotationally-restrained orthotropic plates under uniform shear", Compos. Struct., 93(11), 2785-2794. https://doi.org/10.1016/j.compstruct.2011.05.026
  22. Rad, A.A. and Shahraki, D.P. (2014), "Buckling of cracked functionally graded plates under tension", Thin Wall. Struct., 84, 26-33.
  23. Setoodeh, A.R. and Karami, G. (2004), "Static, free vibration and buckling analysis of anisotropic thick laminated composite plates on distributed and point elastic supports using a 3-D layer-wise FEM", Eng. Struct., 26(2), 211-220. https://doi.org/10.1016/j.engstruct.2003.09.009
  24. Shufrin, L., Rabinovitch, O. and Eisenberger, M. (2008), "Buckling of symmetrically laminated rectangular plates with general boundary conditions-a semi analytical approach", Compos. Struct., 82(4), 521-531. https://doi.org/10.1016/j.compstruct.2007.02.003
  25. Singh, S.B. and Kumar, D. (2010), "Postbuckling response and failure of symmetric laminated plates with rectangular cutouts under in-plane shear", Struct. Eng. Mech., 34(2), 175-188. https://doi.org/10.12989/sem.2010.34.2.175
  26. Singh, B.N., Iyengar, N.G.R. and Yadav, D. (2002), "A C0 finite element investigation for buckling of shear deformable laminated composite plates with random material properties", Struct. Eng. Mech., 13(1), 53-74. https://doi.org/10.12989/sem.2002.13.1.053
  27. Thai, H.T., Park, M. and Choi, D.H. (2013), "A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation", Int. J. Mech. Sci., 73, 40-52. https://doi.org/10.1016/j.ijmecsci.2013.03.017
  28. Winkler, E. (1867), Die Lehre von der Elasticitaet und Festigkeit, Prag, Dominicus.
  29. Xie, J., Ni, Q.Q. and Iwamoto, M. (2003), "Shear buckling analysis of asymmetric angle-ply laminates with higher-order shear deformation", J. Soc. Mater. Sci., 52, 884-890.