DOI QR코드

DOI QR Code

Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells

  • Torabi, Jalal (Department of Mechanical Engineering, University of Guilan) ;
  • Ansari, Reza (Department of Mechanical Engineering, University of Guilan)
  • 투고 : 2018.03.05
  • 심사 : 2018.09.08
  • 발행 : 2018.11.10

초록

A numerical study is performed to investigate the impacts of thermal loading on the vibration and buckling of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) conical shells. Thermo-mechanical properties of constituents are considered to be temperature-dependent. Considering the shear deformation theory, the energy functional is derived, and applying the variational differential quadrature (VDQ) method, the mass and stiffness matrices are obtained. The shear correction factors are accurately calculated by matching the shear strain energy obtained from an exact three-dimensional distribution of the transverse shear stresses and shear strain energy related to the first-order shear deformation theory. Numerical results reveal that considering temperature-dependent material properties plays an important role in predicting the thermally induced vibration of FG-CNTRC conical shells, and neglecting this effect leads to considerable overestimation of the stiffness of the structure.

키워드

참고문헌

  1. Akbari, M., Kiani, Y. and Eslami, M.R. (2015), "Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports", Acta Mech., 226(3), 897-915. https://doi.org/10.1007/s00707-014-1168-3
  2. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
  3. Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B: Eng., 95, 196-208. https://doi.org/10.1016/j.compositesb.2016.03.080
  4. Ansari, R., Torabi, J. and Shakouri, A.H. (2017a), "Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy", Aerosp. Sci. Technol., 60, 152-161. https://doi.org/10.1016/j.ast.2016.11.004
  5. Ansari, R., Torabi, J. and Shojaei, M.F. (2017b), "Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading", Compos. Part B: Eng., 109, 197-213.
  6. Ansari, R., Torabi, J. and Shojaei, M.F. (2016), "Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method", Eur. J. Mech.-A/Sol., 60, 166-182. https://doi.org/10.1016/j.euromechsol.2016.07.003
  7. Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005
  8. Baltacioglu, A.K., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vess. Pip., 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
  9. Civalek, O. (2008), "Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory", J. Compos. Mater., 42(26), 2853-2867. https://doi.org/10.1177/0021998308096952
  10. Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on twoopposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
  11. Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  12. Fiedler, B., Gojny, F.H., Wichmann, M.H., Nolte, M.C. and Schulte, K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66(16), 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
  13. Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062
  14. Gurses, M., Civalek, O., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Meth. Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
  15. Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023
  16. Ho, Y.H., Chang, C.P., Shyu, F.L., Chen, R.B., Chen, S.C. and Lin, M.F. (2004), "Electronic and optical properties of double-walled armchair carbon nanotubes", Carb., 42(15), 3159-3167. https://doi.org/10.1016/j.carbon.2004.07.027
  17. Hosseini, S.M. (2013), "Application of a hybrid mesh-free method based on generalized finite difference (GFD) method for natural frequency analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotubes", CMES-Comput. Model Eng. Sci., 95, 1-29.
  18. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56. https://doi.org/10.1038/354056a0
  19. Jin, G., Ye, T., Ma, X., Chen, Y., Su, Z. and Xie, X. (2013), "A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions", Int. J. Mech. Sci., 75, 357-376. https://doi.org/10.1016/j.ijmecsci.2013.08.003
  20. Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers", Comput. Math. Appl., 72(9), 2433-2449. https://doi.org/10.1016/j.camwa.2016.09.007
  21. Kiani, Y. (2018), "Torsional vibration of functionally graded carbon nanotube reinforced conical shells", Sci. Eng. Compos. Mater., 25(1), 41-52. https://doi.org/10.1515/secm-2015-0454
  22. Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Sol., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  23. Liew, K.M., He, X.Q., Tan, M.J. and Lim, H.K. (2004), "Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method", Int. J. Mech. Sci., 46(3), 411-431. https://doi.org/10.1016/j.ijmecsci.2004.03.011
  24. Manchado, M.L., Valentini, L., Biagiotti, J. and Kenny, J.M. (2005), "Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing", Carb., 43(7), 1499-1505. https://doi.org/10.1016/j.carbon.2005.01.031
  25. Mehrabadi, S.J. and Aragh, B.S. (2014), "Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes", Thin-Wall. Struct., 80, 130-141. https://doi.org/10.1016/j.tws.2014.02.016
  26. Mirzaei, M. and Kiani, Y. (2015), "Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells", Aerosp. Sci. Technol., 47, 42-53.
  27. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431
  28. Onate, E. (2013), Structural Analysis with the Finite Element Method. Linear Statics: Volume 2: Beams, Plates and Shells, Springer Science and Business Media.
  29. Raminnea, M., Biglari, H. and Tahami, F.V. (2016), "Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture", Struct. Eng. Mech., 59(1), 153-186. https://doi.org/10.12989/sem.2016.59.1.153
  30. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  31. Shen, H.S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
  32. Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Meth. Appl. Mech. Eng., 213, 196-205.
  33. Shen, H.S. and Xiang, Y. (2014), "Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. Struct., 111, 291-300.
  34. Shen, H.S. and Xiang, Y. (2015), "Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations", Compos. Struct., 123, 383-392. https://doi.org/10.1016/j.compstruct.2014.12.059
  35. Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
  36. Shojaei, M.F. and Ansari, R. (2017), "Variational differential quadrature: A technique to simplify numerical analysis of structures", Appl. Math. Modell., 49, 705-738. https://doi.org/10.1016/j.apm.2017.02.052
  37. Sofiyev, A.H., Keskin, E.M., Erdem, H. and Zerin, Z. (2003), "Buckling of an orthotropic cylindrical thin shell with continuously varying thickness under a dynamic loading", Ind. J. Eng. Mater. Sci., 10, 365-370.
  38. Sofiyev, A. H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017b), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/SCS.2017.25.5.581
  39. Sofiyev, A.H., Zerin, Z. and Kuruoglu, N. (2017a), "Thermoelastic buckling of FGM conical shells under non-linear temperature rise in the framework of the shear deformation theory", Compos. Part B: Eng., 108, 279-290. https://doi.org/10.1016/j.compositesb.2016.09.102
  40. Sumfleth, J., Prehn, K., Wichmann, M.H., Wedekind, S. and Schulte, K. (2010), "A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD-and arc-grown multi-wall carbon nanotubes", Compos. Sci. Technol., 70(1), 173-180. https://doi.org/10.1016/j.compscitech.2009.10.007
  41. Talebitooti, M. (2013), "Three-dimensional free vibration analysis of rotating laminated conical shells: Layerwise differential quadrature (LW-DQ) method", Arch. Appl. Mech., 83(5), 765-781. https://doi.org/10.1007/s00419-012-0716-3
  42. Torabi, J., Kiani, Y. and Eslami, M.R. (2013), "Linear thermal buckling analysis of truncated hybrid FGM conical shells", Compos. Part B: Eng., 50, 265-272.
  43. Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vibr., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031
  44. Xiang, Y., Ma, Y. F., Kitipornchai, S., Lim, C.W. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1
  45. Yakobson, B.I. and Avouris, P. (2001), Mechanical Properties of Carbon Nanotubes. In Carbon Nanotubes (pp. 287-327), Springer, Berlin, Heidelberg, Germany.
  46. Yang, J., Ke, L.L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams", Int. J. Struct. Stab. Dyn., 15(8), 1540017.
  47. Yas, M.H., Pourasghar, A., Kamarian, S. and Heshmati, M. (2013), "Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube", Mater. Des., 49, 583-590. https://doi.org/10.1016/j.matdes.2013.01.001
  48. Zhang, L.W., Song, Z.G. and Liew, K.M. (2016), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput. Meth. Appl. Mech. Eng., 300, 427-441. https://doi.org/10.1016/j.cma.2015.11.029

피인용 문헌

  1. Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure vol.74, pp.2, 2018, https://doi.org/10.12989/sem.2020.74.2.297
  2. Novel Numerical Approach for Free Vibration of Nanocomposite Joined Conical-Cylindrical-Conical Shells vol.59, pp.1, 2018, https://doi.org/10.2514/1.j059518
  3. On thermally induced instability of FG-CNTRC cylindrical panels vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.043
  4. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157