References
- Akbari, M., Kiani, Y. and Eslami, M.R. (2015), "Thermal buckling of temperature-dependent FGM conical shells with arbitrary edge supports", Acta Mech., 226(3), 897-915. https://doi.org/10.1007/s00707-014-1168-3
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity", Struct. Eng. Mech., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Ansari, R. and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B: Eng., 95, 196-208. https://doi.org/10.1016/j.compositesb.2016.03.080
- Ansari, R., Torabi, J. and Shakouri, A.H. (2017a), "Vibration analysis of functionally graded carbon nanotube-reinforced composite elliptical plates using a numerical strategy", Aerosp. Sci. Technol., 60, 152-161. https://doi.org/10.1016/j.ast.2016.11.004
- Ansari, R., Torabi, J. and Shojaei, M.F. (2017b), "Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading", Compos. Part B: Eng., 109, 197-213.
- Ansari, R., Torabi, J. and Shojaei, M.F. (2016), "Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method", Eur. J. Mech.-A/Sol., 60, 166-182. https://doi.org/10.1016/j.euromechsol.2016.07.003
- Baltacioglu, A.K., Akgoz, B. and Civalek, O. (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005
- Baltacioglu, A.K., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vess. Pip., 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
- Civalek, O. (2008), "Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory", J. Compos. Mater., 42(26), 2853-2867. https://doi.org/10.1177/0021998308096952
- Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on twoopposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002
- Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
- Fiedler, B., Gojny, F.H., Wichmann, M.H., Nolte, M.C. and Schulte, K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66(16), 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
- Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219(6), 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062
- Gurses, M., Civalek, O., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Meth. Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023
- Ho, Y.H., Chang, C.P., Shyu, F.L., Chen, R.B., Chen, S.C. and Lin, M.F. (2004), "Electronic and optical properties of double-walled armchair carbon nanotubes", Carb., 42(15), 3159-3167. https://doi.org/10.1016/j.carbon.2004.07.027
- Hosseini, S.M. (2013), "Application of a hybrid mesh-free method based on generalized finite difference (GFD) method for natural frequency analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotubes", CMES-Comput. Model Eng. Sci., 95, 1-29.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56. https://doi.org/10.1038/354056a0
- Jin, G., Ye, T., Ma, X., Chen, Y., Su, Z. and Xie, X. (2013), "A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions", Int. J. Mech. Sci., 75, 357-376. https://doi.org/10.1016/j.ijmecsci.2013.08.003
- Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers", Comput. Math. Appl., 72(9), 2433-2449. https://doi.org/10.1016/j.camwa.2016.09.007
- Kiani, Y. (2018), "Torsional vibration of functionally graded carbon nanotube reinforced conical shells", Sci. Eng. Compos. Mater., 25(1), 41-52. https://doi.org/10.1515/secm-2015-0454
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Sol., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Liew, K.M., He, X.Q., Tan, M.J. and Lim, H.K. (2004), "Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method", Int. J. Mech. Sci., 46(3), 411-431. https://doi.org/10.1016/j.ijmecsci.2004.03.011
- Manchado, M.L., Valentini, L., Biagiotti, J. and Kenny, J.M. (2005), "Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing", Carb., 43(7), 1499-1505. https://doi.org/10.1016/j.carbon.2005.01.031
- Mehrabadi, S.J. and Aragh, B.S. (2014), "Stress analysis of functionally graded open cylindrical shell reinforced by agglomerated carbon nanotubes", Thin-Wall. Struct., 80, 130-141. https://doi.org/10.1016/j.tws.2014.02.016
- Mirzaei, M. and Kiani, Y. (2015), "Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells", Aerosp. Sci. Technol., 47, 42-53.
- Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431
- Onate, E. (2013), Structural Analysis with the Finite Element Method. Linear Statics: Volume 2: Beams, Plates and Shells, Springer Science and Business Media.
- Raminnea, M., Biglari, H. and Tahami, F.V. (2016), "Nonlinear higher order Reddy theory for temperature-dependent vibration and instability of embedded functionally graded pipes conveying fluid-nanoparticle mixture", Struct. Eng. Mech., 59(1), 153-186. https://doi.org/10.12989/sem.2016.59.1.153
- Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
- Shen, H.S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
- Shen, H.S. and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Meth. Appl. Mech. Eng., 213, 196-205.
- Shen, H.S. and Xiang, Y. (2014), "Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments", Compos. Struct., 111, 291-300.
- Shen, H.S. and Xiang, Y. (2015), "Thermal postbuckling of nanotube-reinforced composite cylindrical panels resting on elastic foundations", Compos. Struct., 123, 383-392. https://doi.org/10.1016/j.compstruct.2014.12.059
- Shen, H.S. and Zhang, C.L. (2010), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
- Shojaei, M.F. and Ansari, R. (2017), "Variational differential quadrature: A technique to simplify numerical analysis of structures", Appl. Math. Modell., 49, 705-738. https://doi.org/10.1016/j.apm.2017.02.052
- Sofiyev, A.H., Keskin, E.M., Erdem, H. and Zerin, Z. (2003), "Buckling of an orthotropic cylindrical thin shell with continuously varying thickness under a dynamic loading", Ind. J. Eng. Mater. Sci., 10, 365-370.
- Sofiyev, A. H., Zerin, Z., Allahverdiev, B.P., Hui, D., Turan, F. and Erdem, H. (2017b), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/SCS.2017.25.5.581
- Sofiyev, A.H., Zerin, Z. and Kuruoglu, N. (2017a), "Thermoelastic buckling of FGM conical shells under non-linear temperature rise in the framework of the shear deformation theory", Compos. Part B: Eng., 108, 279-290. https://doi.org/10.1016/j.compositesb.2016.09.102
- Sumfleth, J., Prehn, K., Wichmann, M.H., Wedekind, S. and Schulte, K. (2010), "A comparative study of the electrical and mechanical properties of epoxy nanocomposites reinforced by CVD-and arc-grown multi-wall carbon nanotubes", Compos. Sci. Technol., 70(1), 173-180. https://doi.org/10.1016/j.compscitech.2009.10.007
- Talebitooti, M. (2013), "Three-dimensional free vibration analysis of rotating laminated conical shells: Layerwise differential quadrature (LW-DQ) method", Arch. Appl. Mech., 83(5), 765-781. https://doi.org/10.1007/s00419-012-0716-3
- Torabi, J., Kiani, Y. and Eslami, M.R. (2013), "Linear thermal buckling analysis of truncated hybrid FGM conical shells", Compos. Part B: Eng., 50, 265-272.
- Tornabene, F., Viola, E. and Inman, D.J. (2009), "2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures", J. Sound Vibr., 328(3), 259-290. https://doi.org/10.1016/j.jsv.2009.07.031
- Xiang, Y., Ma, Y. F., Kitipornchai, S., Lim, C.W. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1
- Yakobson, B.I. and Avouris, P. (2001), Mechanical Properties of Carbon Nanotubes. In Carbon Nanotubes (pp. 287-327), Springer, Berlin, Heidelberg, Germany.
- Yang, J., Ke, L.L. and Feng, C. (2015), "Dynamic buckling of thermo-electro-mechanically loaded FG-CNTRC beams", Int. J. Struct. Stab. Dyn., 15(8), 1540017.
- Yas, M.H., Pourasghar, A., Kamarian, S. and Heshmati, M. (2013), "Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube", Mater. Des., 49, 583-590. https://doi.org/10.1016/j.matdes.2013.01.001
- Zhang, L.W., Song, Z.G. and Liew, K.M. (2016), "Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow", Comput. Meth. Appl. Mech. Eng., 300, 427-441. https://doi.org/10.1016/j.cma.2015.11.029
Cited by
- Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure vol.74, pp.2, 2018, https://doi.org/10.12989/sem.2020.74.2.297
- Novel Numerical Approach for Free Vibration of Nanocomposite Joined Conical-Cylindrical-Conical Shells vol.59, pp.1, 2018, https://doi.org/10.2514/1.j059518
- On thermally induced instability of FG-CNTRC cylindrical panels vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.043
- Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157