Acknowledgement
Supported by : Tunisian Ministry of Higher Education and Scientific Research
References
- Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
- Arciniega, R.A. and Reddy, J.N. (2007), "Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures", Comput. Meth. Appl. Mech. Eng., 196(4-6), 1048-1073. https://doi.org/10.1016/j.cma.2006.08.014
- Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/SEM.2018.65.4.453
- Autay, R., Koubaa, S., Wali, M. and Dammak, F. (2017), "Numerical implementation of coupled anisotropic plasticityductile damage in sheet metal forming process", J. Mech., 34(4), 417-430.
- Baltacioglu, A.K., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vess. Pip., 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
- Bao, G. and Wang, L. (1995), "Multiple cracking in functionally graded ceramic/metal coatings", Int. J. Sol. Struct., 32(19), 2853-2871. https://doi.org/10.1016/0020-7683(94)00267-Z
- Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
- Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
- Belhassen, L., Koubaa, S., Wali, M. and Dammak, F. (2016), "Numerical prediction of springback and ductile damage in rubber-pad forming process of aluminum sheet metal", Int. J. Mech. Sci., 117, 218-226. https://doi.org/10.1016/j.ijmecsci.2016.08.015
- Belhassen, L., Koubaa, S., Wali, M. and Dammak, F. (2017), "Anisotropic effects in the compression beading of aluminum thin-walled tubes with rubber", Thin-Wall. Struct., 119, 902-910. https://doi.org/10.1016/j.tws.2017.08.010
- Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Ben Said, L., Mars, J., Wali, M. and Dammak, F. (2017), "Numerical prediction of the ductile damage in single point incremental forming process", Int. J. Mech. Sci., 131, 546-558.
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bocciarelli, M., Bolzon, G. and Maier, G. (2008), "A constitutive model of metal-ceramic functionally graded material behavior), pp. formulation and parameter identification", Comput. Mater. Sci., 43(1), 16-26. https://doi.org/10.1016/j.commatsci.2007.07.047
- Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/SEM.2016.58.3.397
- Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/SEM.2018.66.1.061
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
- Civalek, O. (2008), "Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory", J. Compos. Mater., 42(26), 2853-2867. https://doi.org/10.1177/0021998308096952
- Civalek, O. (2013), "Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches", Compos.: Part B, 50, 171-179.
- Demir, C., Mercan, K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Compos. Part B, 94, 1-10.
- El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
- Elmossouess, B., Kebdani, S., Bouiadjra, M.B. and Tounsi, A. (2017), "A novel and simple HSDT for thermal buckling response of functionally graded sandwich plates", Struct. Eng. Mech., 62(4), 401-415. https://doi.org/10.12989/sem.2017.62.4.401
- Fontes Valente, R.A., Natal Jorge, R.M., Cardoso, R.P.R., Cesar de Sa, J.M.A. and Gracio, J.J.A. (2003), "On the use of an enhanced transverse shear strain shell element for problems involving large rotations", Comput. Mech., 30(4), 286-296. https://doi.org/10.1007/s00466-002-0388-x
- Frikha, A. and Dammak, F. (2017), "Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element", Comput. Meth. Appl. Mech. Eng., 315, 1-24. https://doi.org/10.1016/j.cma.2016.10.017
- Frikha, A., Zghal, S. and Dammak, F. (2018), "Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element", Aerosp. Sci. Technol., 78, 438-451. https://doi.org/10.1016/j.ast.2018.04.048
- Frikha, A., Hajlaoui, A., Wali, M. and Dammak, F. (2016), "A new higher order C0 mixed beam element for FGM beams analysis", Compos. Part B, 106, 181-189. https://doi.org/10.1016/j.compositesb.2016.09.024
- Ghannad, M., Nejad, M.Z., Rahimi, G.H. and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105
- GhannadPour, S.A.M. and Alinia, M.M. (2006), "Large deflection behavior of functionally graded plates under pressure loads", Compos. Struct., 75, 67-71. https://doi.org/10.1016/j.compstruct.2006.04.004
- Gunes, R., Aydin, M., Apalak, M.K. and Reddy, J.N. (2014), "Experimental and numerical investigations of low velocity impact on functionally graded circular plates", Compos. Part B: Eng., 59, 21-32. https://doi.org/10.1016/j.compositesb.2013.11.022
- Gurses, M., Civalek, O., Korkmaz, A. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Numer. Meth. Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
- Hajlaoui, A., Triki, E., Frikha, A., Wali M. and Dammak, F. (2017), "Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element", Lat. Am. J. Sol. Struct., 14(1), 72-91. https://doi.org/10.1590/1679-78253323
- Hajlaoui, A., Jarraya, A., El Bikri, K. and Dammak, F. (2015), "Buckling analysis of functionally graded materials structures with enhanced solid-shell elements and transverse shear correction", Compos. Struct., 132, 87-97. https://doi.org/10.1016/j.compstruct.2015.04.059
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Hosseini Tehrani, P. and Talebi, M. (2012), "Stress and temperature distribution study in a functionally graded brake disk", Int. J. Automot. Eng., 2(3), 172-179.
- Jin, G., Te, Y., Me, X., Chen, Y., Su, X. and Xie, X. (2013), "A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions", Int. J. Mech. Sci., 75, 357-376.
- Kar, V.R. and Panda, S.K. (2015), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. https://doi.org/10.12989/sem.2015.53.4.661
- Lee, M., Park, I. and Lee, U. (2017), "An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration", Struct. Eng. Mech., 61(4), 551-561. https://doi.org/10.12989/SEM.2017.61.4.551
- Liew, K.M., He, X.Q., Tan, M.J. and Lim, H.K. (2004), "Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT meshfree method", Int. J. Mech. Sci., 46(3), 411-431. https://doi.org/10.1016/j.ijmecsci.2004.03.011
- Mahi, A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Mars, J., Koubaa, S., Wali, M. and Dammak, F. (2017), "Numerical analysis of geometrically non-linear behavior of functionally graded shells", Lat. Am. J. Sol. Struct., 14(11), 1952-1978. https://doi.org/10.1590/1679-78253914
- Mars, J., Wali, M., Jarraya, A., Dammak, F. and Dhiab. (2015), "A Finite element implementation of an orthotropic plasticity model for sheet metal in low velocity impact simulations", Thin-Wall. Struct., 89, 93-100. https://doi.org/10.1016/j.tws.2014.12.019
- Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
- Mindiin, R.D. (1951), "Influence of rotary inertia and shear on flexural motion of isotropic elastic plates", J. Appl. Mech., 18, 31-38.
- Moita, J.S., Araujo, A.L., Mota Soares, C.M., Mota Soares, C.A. and Herskovits, J. (2016), "Material and geometric nonlinear analysis of functionally graded plate-shell type structures", Appl. Compos. Mater., 23(4), 537-554. https://doi.org/10.1007/s10443-016-9473-8
- Orlik, J. (2010), "Asymptotic homogenization algorithm for reinforced metal-matrix elastoplastic composites", Compos. Struct., 92(7), 1581-1590. https://doi.org/10.1016/j.compstruct.2009.11.021
- Pettermann, H.E., Huber, C.O., Luxner, M.H., Nogales, S. and Bohm, H.J. (2010), "An incremental Mori-Tanaka homogenization scheme for finite strain thermoelastoplasticity of mmcs", Mater., 3(1), 434-451. https://doi.org/10.3390/ma3010434
- Phung-Van, P., Nguyen-Thoi, T., Luong-Van, H. and Lieu-Xuan, Q. (2014), "Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT", Comput. Meth. Appl. Mech. Eng., 270, 15-36. https://doi.org/10.1016/j.cma.2013.11.019
- Rahman, S. and Chakraborty, A. (2007), "A stochastic micromechanical model for elastic properties of functionally graded materials", Mech. Mater., 39(6), 548-563. https://doi.org/10.1016/j.mechmat.2006.08.006
- Reddy, J.N. (1984), "A refined nonlinear theory of plates with transverse shear deformation", Int. J. Sol. Struct., 20(9-10), 881-896. https://doi.org/10.1016/0020-7683(84)90056-8
- Shankara, C.A. and Iyengar, N.G.R. (1996), "A C0element for the free vibration analysis of laminated composite plates", J. Sound Vibr., 191(5), 721-738. https://doi.org/10.1006/jsvi.1996.0152
- Shaterzadeh, A. and Foroutan, K. (2016), "Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation", Struct. Eng. Mech., 60(4), 615-631. https://doi.org/10.12989/sem.2016.60.4.615
- Suquet, P. (1997), "Effective properties of nonlinear composites", Contin. Micromech., 377, 197-264.
- Sze, K.Y., Liua, X.H. and Lob, S.H. (2004), "Popular benchmark problems for geometric nonlinear analysis of shells", Fin. Elem. Analy. Des., 40(11), 1551-1569. https://doi.org/10.1016/j.finel.2003.11.001
- Talebitooti, M. (2013), "Three-dimensional free vibration analysis of rotating laminated conical shells: Layerwise differential quadrature (LW-DQ) method", Arch. Appl. Mech., 83(5), 765-781. https://doi.org/10.1007/s00419-012-0716-3
- Tamura, I., Tomota, Y. and Ozawa, H. (1973), "Strength and ductility of Fe-Ni-C alloys composed of austenite and martensite with various strength", Proceedings of the 3rd International Conference on Strength of Metals and Alloys, Cambridge: Institute of Metals.
- Tjong, S.C. and Ma, Z.Y. (2000), "Microstructural and mechanical characteristics of in situ metal matrix composites ", Mater. Sci. Eng., 29(3-4), 49-113. https://doi.org/10.1016/S0927-796X(00)00024-3
- Trabelsi, S., Frikha, A., Zghal, S. and Dammak, F. (2018), "Thermal post-buckling analysis of functionally graded material structures using a modified FSDT", Int. J. Mech. Sci., 144, 74-89.
- Tu, T.M., Quoc, T.H. and Van Long, N. (2017), "Bending analysis of functionally graded plates using new eightunknown higher order shear deformation theory", Struct. Eng. Mech., 62(3), 311-324. https://doi.org/10.12989/sem.2017.62.3.311
- Vaghefi, R., Hematiyan, M.R. and Nayebi, A. (2016), "Threedimensional thermo-elastoplastic analysis of thick functionally graded plates using the meshless local Petrov-Galerkin method",Eng. Analy. Bound. Elem., 71, 34-49. https://doi.org/10.1016/j.enganabound.2016.07.001
- Wali, M., Autay, R., Mars, J. and Dammak, F. (2016), "A simple integration algorithm for a non-associated anisotropic plasticity model for sheet metal forming", Int. J. Numer. Meth. Eng., 107(3), 183-204. https://doi.org/10.1002/nme.5158
- Wali, M., Chouchene, H., Ben Said, L. and Dammak, F. (2015), "One-equation integration algorithm of a generalized quadratic yield functions with Chaboche non-linear isotropic/kinematic hardening", Int. J. Mech. Sci., 92, 223-232.
- Williamson, R.L., Rabin, B.H. and Drake, J.T. (1993), "Finite element analysis of thermal residual stresses at graded ceramic/metal interfaces), part I), pp. model description and geometrical effects", J. Appl. Phys., 74(2), 1310-1320. https://doi.org/10.1063/1.354910
- Woo, J. and Merguid, S.A. (2001), "Non-linear analysis of functionally graded plates and shallow shells", Int. J. Sol. Struct., 38(42-43), 7409-7421. https://doi.org/10.1016/S0020-7683(01)00048-8
- Xu, G., Huang, H. and Han, Q. (2018), "Study on postbuckling of axial compressed elastoplastic functionally graded cylindrical shells", Mech. Adv. Mater. Struct., 25(10), 820-828. https://doi.org/10.1080/15376494.2017.1308589
- Yang, J. and Shena, H.S. (2003), "Non-linear analysis of functionally graded plates under transverse and in-plane loads", Int. J. Non-Lin. Mech., 38(4), 467-482. https://doi.org/10.1016/S0020-7462(01)00070-1
- Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/GAE.2018.14.6.519
- Yu, J. and Kidane, A. (2014), "Modeling functionally graded materials containing multiple heterogeneities", Acta Mech., 225(7), 1931-1943. https://doi.org/10.1007/s00707-013-1033-9
- Zghal, S., Frikha, A. and Dammak, F. (2018a), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Math. Modell., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021
- Zghal, S., Frikha, A. and Dammak, F. (2017), "Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures", Compos. Struct., 176, 1107-1123 .
- Zghal, S., Frikha, A. and Dammak, F. (2018b), "Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels", Compos. Part B, 150(1), 165-183. https://doi.org/10.1016/j.compositesb.2018.05.037
- Zghal, S., Frikha, A. and Dammak, F. (2018c), "Non-linear bending analysis of nanocomposites reinforced by graphenenanotubes with finite shell element and membrane enhancement", Eng. Struct., 158, 95-109.
- Zhao, X. and Liew, KM. (2009), "Geometrically nonlinear analysis of functionally graded shells", Int. J. Mech. Sci., 51, 131-144. https://doi.org/10.1016/j.ijmecsci.2008.12.004
- Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermomechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34.
Cited by
- Analyzing FG shells with large deformations and finite rotations vol.16, pp.5, 2018, https://doi.org/10.1108/wje-10-2018-0357
- Dynamic analysis of functionally graded carbon nanotube-reinforced shell structures with piezoelectric layers under dynamic loads vol.26, pp.13, 2020, https://doi.org/10.1177/1077546319892753