DOI QR코드

DOI QR Code

Suppressive Effect of 4-Hydroxy-2-(4-Hydroxyphenethyl) Isoindoline-1,3-Dione on Ovalbumin-Induced Allergic Asthma

  • Huang, Jin (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Su, Mingzhi (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Lee, Bo-Kyung (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Kim, Mee-Jeong (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Jung, Jee H. (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University) ;
  • Im, Dong-Soon (Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University)
  • Received : 2018.01.09
  • Accepted : 2018.02.20
  • Published : 2018.11.01

Abstract

4-Hydroxy-2-(4-hydroxyphenethyl)isoindoline-1,3-dione (PD1) is a synthetic phthalimide derivative of a marine compound. PD1 has peroxisome proliferator-activated receptor (PPAR) ${\gamma}$ agonistic and anti-inflammatory effects. This study aimed to investigate the effect of PD1 on allergic asthma using rat basophilic leukemia (RBL)-2H3 mast cells and an ovalbumin (OVA)-induced asthma mouse model. In vitro, PD1 suppressed ${\beta}$-hexosaminidase activity in RBL-2H3 cells. In the OVA-induced allergic asthma mouse model, increased inflammatory cells and elevated Th2 and Th1 cytokine levels were observed in bronchoalveolar lavage fluid (BALF) and lung tissue. PD1 administration decreased the numbers of inflammatory cells, especially eosinophils, and reduced the mRNA and protein levels of the Th2 cytokines including interleukin (IL)-4 and IL-13, in BALF and lung tissue. The severity of inflammation and mucin secretion in the lungs of PD1-treated mice was also less. These findings indicate that PD1 could be a potential compound for anti-allergic therapy.

Keywords

References

  1. Abbas, A. K., Murphy, K. M. and Sher, A. (1996) Functional diversity of helper T lymphocytes. Nature 383, 787-793. https://doi.org/10.1038/383787a0
  2. Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M. and Evans, R. M. (2013) PPAR${\gamma}$ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 557 https://doi.org/10.1038/nm.3159
  3. Alexandre-Moreira, M. S., Takiya, C. M., de Arruda, L. B., Pascarelli, B., Gomes, R. N., Neto, H. C. C. F., Lima, L. M. and Barreiro, E. J. (2005) LASSBio-468: a new achiral thalidomide analogue which modulates TNF-${\alpha}$ and NO production and inhibits endotoxic shock and arthritis in an animal model. Int. Immunopharmacol. 5, 485-494. https://doi.org/10.1016/j.intimp.2004.10.017
  4. Alvaro, M., Sancha, J., Larramona, H., Lucas, J., Mesa, M., Tabar, A. and Martinez-Canavate, A. (2013) Allergen-specific immunotherapy: update on immunological mechanisms. Allergol. Immunopathol. (Madr.) 41, 265-272. https://doi.org/10.1016/j.aller.2012.07.018
  5. Aoki, H., Mogi, C., Hisada, T., Nakakura, T., Kamide, Y., Ichimonji, I., Tomura, H., Tobo, M., Sato, K. and Tsurumaki, H. (2013) Protonsensing ovarian cancer G protein-coupled receptor 1 on dendritic cells is required for airway responses in a murine asthma model. PLoS ONE 8, e79985. https://doi.org/10.1371/journal.pone.0079985
  6. Aoki, H., Mogi, C. and Okajima, F. (2014) Ionotropic and metabotropic proton-sensing receptors involved in airway inflammation in allergic asthma. Mediators Inflamm. 2014, 712962.
  7. Asano, T., Kume, H., Taki, F., Ito, S. and Hasegawa, Y. (2010) Thalidomide attenuates airway hyperresponsiveness and eosinophilic inflammation in a murine model of allergic asthma. Biol. Pharm. Bull. 33, 1028-1032. https://doi.org/10.1248/bpb.33.1028
  8. Bhat, M. A., Al-Omar, M. A., Ansari, M. A., Zoheir, K. M., Imam, F., Attia, S. M., Bakheet, S. A., Nadeem, A., Korashy, H. M. and Voronkov, A. (2015) Design and synthesis of N-arylphthalimides as inhibitors of glucocorticoid-induced TNF receptor-related protein, proinflammatory mediators, and cytokines in carrageenan-induced lung inflammation. J. Med. Chem. 58, 8850-8867. https://doi.org/10.1021/acs.jmedchem.5b00934
  9. Bo, Q.-L., Chen, Y.-H., Yu, Z., Fu, L., Zhou, Y., Zhang, G.-B., Wang, H., Zhang, Z.-H. and Xu, D.-X. (2016) Rosiglitazone pretreatment protects against lipopolysaccharide-induced fetal demise through inhibiting placental inflammation. Mol. Cell. Endocrinol. 423, 51-59. https://doi.org/10.1016/j.mce.2016.01.004
  10. Bui, T. T., Piao, C. H., Song, C. H., Shin, H. S., Shon, D.-H. and Chai, O. H. (2017) Piper nigrum extract ameliorated allergic inflammation through inhibiting Th2/Th17 responses and mast cells activation. Cell. Immunol. 322, 64-73. https://doi.org/10.1016/j.cellimm.2017.10.005
  11. Cembrzynska-Nowak, M., Szklarz, E., Inglot, A. D. and Teodorczyk-Injeyan, J. A. (1993) Elevated release of tumor necrosis factor-alpha and interferon-gamma by bronchoalveolar leukocytes from patients with bronchial asthma. Am. Rev. Respir. Dis. 147, 291-295. https://doi.org/10.1164/ajrccm/147.2.291
  12. Coffman, R. L., Seymour, B. W., Lebman, D. A., Hiraki, D. D., Christiansen, J. A., Shrader, B., Cherwinski, H. M., Savelkoul, H. F., Finkelman, F. D. and Bond, M. W. (1988) The role of helper T cell products in mouse B cell differentiation and isotype regulation. Immunol. Rev. 102, 5-28. https://doi.org/10.1111/j.1600-065X.1988.tb00739.x
  13. Cohn, L., Elias, J. A. and Chupp, G. L. (2004) Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol. 22, 789-815. https://doi.org/10.1146/annurev.immunol.22.012703.104716
  14. Curtis, J., Warnock, M., Arraj, S. and Kaltreider, H. (1990) Histologic analysis of an immune response in the lung parenchyma of mice. Angiopathy accompanies inflammatory cell influx. Am. J. Pathol. 137, 689.
  15. D'Agostino, G., La Rana, G., Russo, R., Sasso, O., Iacono, A., Esposito, E., Raso, G. M., Cuzzocrea, S., Verme, J. L. and Piomelli, D. (2007) Acute intracerebroventricular administration of palmitoylethanolamide, an endogenous peroxisome proliferator-activated receptor-${\alpha}$ agonist, modulates carrageenan-induced paw edema in mice. J. Pharmacol. Exp. Ther. 322,1137-1143. https://doi.org/10.1124/jpet.107.123265
  16. Duan, W., Chan, J. H., Wong, C. H., Leung, B. P. and Wong, W. F. (2004) Anti-inflammatory effects of mitogen-activated protein ki-nase kinase inhibitor U0126 in an asthma mouse model. J. Immunol. 172, 7053-7059. https://doi.org/10.4049/jimmunol.172.11.7053
  17. Eom, S. H., Liu, S., Su, M., Noh, T. H., Hong, J., Kim, N. D., Chung, H. Y., Yang, M. H. and Jung, J. H. (2016) Synthesis of phthalimide derivatives as potential PPAR-${\gamma}$ ligands. Mar. Drugs 14, E112. https://doi.org/10.3390/md14060112
  18. Foster, P. S., Mould, A. W., Yang, M., Mackenzie, J., Mattes, J., Hogan, S. P., Mahalingam, S., Mckenzie, A. N., Rothenberg, M. E. and Young, I. G. (2001) Elemental signals regulating eosinophil accumulation in the lung. Immunol. Rev. 179, 173-181. https://doi.org/10.1034/j.1600-065X.2001.790117.x
  19. Girodet, P.-O., Ozier, A., Bara, I., Tunon de Lara, J. M., Marthan, R. and Berger, P. (2011) Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention. Pharmacol. Ther. 130, 325-337. https://doi.org/10.1016/j.pharmthera.2011.02.001
  20. Hams, E. and Fallon, P. G. (2012) Innate type 2 cells and asthma. Curr. Opin. Pharmacol. 12, 503-509. https://doi.org/10.1016/j.coph.2012.06.001
  21. Hessel, E. M., Van Oosterhout, A., Van Ark, I., Van Esch, B., Hofman, G., Van Loveren, H., Savelkoul, H. and Nijkamp, F. P. (1997) Development of airway hyperresponsiveness is dependent on interferongamma and independent of eosinophil infiltration. Am. J. Respir. Cell Mol. Biol. 16, 325-334. https://doi.org/10.1165/ajrcmb.16.3.9070618
  22. Huang, J., Kang, S., Park, S.-J. and Im, D.-S. (2017) Apelin protects against liver X receptor-mediated steatosis through AMPK and $PPAR{\alpha}$ in human and mouse hepatocytes. Cell Signal. 39, 84-94. https://doi.org/10.1016/j.cellsig.2017.08.003
  23. Kwak, Y.-G., Song, C. H., Ho, K. Y., Hwang, P. H., Kim, J.-S., Lee, K. S. and Lee, Y. C. (2003) Involvement of PTEN in airway hyperresponsiveness and inflammation in bronchial asthma. J. Clin. Invest. 111, 1083-1092. https://doi.org/10.1172/JCI16440
  24. Lee, A.-Y., Kang, S., Park, S.-J., Huang, J. and Im, D.-S. (2016) Antiallergic effect of oroxylin a from Oroxylum indicum using in vivo and in vitro experiments. Biomol. Ther. (Seoul) 24, 283-290. https://doi.org/10.4062/biomolther.2016.071
  25. Lee, B.-K., Park, S.-J., Nam, S.-Y., Kang, S., Hwang, J., Lee, S.-J. and Im, D.-S. (2017) Anti-allergic effects of sesquiterpene lactones from Saussurea costus (Falc.) Lipsch. determined using in vivo and in vitro experiments. J. Ethnopharmacol. 213, 256-261.
  26. Lee, H. S., Kwon, H.-S., Park, D.-E., Woo, Y. D., Kim, H. Y., Kim, H.-R., Cho, S.-H., Min, K.-U., Kang, H.-R. and Chang, Y.-S. (2015) Thalidomide inhibits alternative activation of macrophages in vivo and in vitro: a potential mechanism of anti-asthmatic effect of thalidomide. PLoS ONE 10, e0123094. https://doi.org/10.1371/journal.pone.0123094
  27. Lee, K.-P., Kang, S., Park, S.-J., Choi, Y.-W., Lee, Y.-G. and Im, D.-S. (2013) Anti-allergic and anti-inflammatory effects of bakkenolide B isolated from Petasites japonicus leaves. J. Ethnopharmacol. 148, 890-894. https://doi.org/10.1016/j.jep.2013.05.037
  28. Lima, L. M., Castro, P., Machado, A. L., Fraga, C. A. M., Lugnier, C., de Moraes, V. L. G. and Barreiro, E. J. (2002) Synthesis and antiinflammatory activity of phthalimide derivatives, designed as new thalidomide analogues. Bioorg. Med. Chem. 10, 3067-3073. https://doi.org/10.1016/S0968-0896(02)00152-9
  29. Lloyd, C. M. and Saglani, S. (2013) T cells in asthma: influences of genetics, environment, and T-cell plasticity. J. Allergy Clin. Immunol. 131, 1267-1274. https://doi.org/10.1016/j.jaci.2013.02.016
  30. Majdalawieh, A. and Ro, H.-S. (2010) PPAR${\gamma}$1 and $LXR{\alpha}$ face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1. Nucl. Recept. Signal. 8, e004.
  31. Mishra, V., Banga, J. and Silveyra, P. (2017) Oxidative stress and cellular pathways of asthma and inflammation: therapeutic strategies and pharmacological targets. Pharmacol. Ther. 181, 169-182.
  32. Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. and Glass, C. K. (1998) The peroxisome proliferator-activated receptor-${\gamma}$ is a negative regulator of macrophage activation. Nature 391, 79-82. https://doi.org/10.1038/34178
  33. Romagnani, S. (1994) Lymphokine production by human T cells in disease states. Ann. Rev. Immunol. 12, 227-257. https://doi.org/10.1146/annurev.iy.12.040194.001303
  34. Sharma, U., Kumar, P., Kumar, N. and Singh, B. (2010) Recent advances in the chemistry of phthalimide analogues and their therapeutic potential. Mini Rev. Med. Chem. 10, 678-704. https://doi.org/10.2174/138955710791572442
  35. Spiegelman, B. (1998) PPAR-${\gamma}$: adipogenic regulator and thiazolidinedione receptor. Diabetes 47, 507-514. https://doi.org/10.2337/diabetes.47.4.507
  36. Su, M., Cao, J., Huang, J., Liu, S., Im, D. S., Yoo, J.-W. and Jung, J. H. (2017) The in vitro and in vivo anti-inflammatory effects of a phthalimide PPAR-${\gamma}$ agonist. Mar. Drugs 15, 7. https://doi.org/10.3390/md15010007
  37. Sun, J., Dong, J., Nurahmat, M., Li, M., Abduwaki, M., Luo, Q., Wei, Y. and Lv, Y. (2016) Loki zupa (Luooukezupa) decoction reduced airway inflammation in an OVA-induced asthma mouse model. Chin. Med. 11, 22. https://doi.org/10.1186/s13020-016-0094-9
  38. Tournoy, K., Kips, J., Schou, C. and Pauwels, R. (2000) Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness. Clin. Exp. Allergy 30, 79-85. https://doi.org/10.1046/j.1365-2222.2000.00772.x
  39. Tyagi, S., Gupta, P., Saini, A. S., Kaushal, C. and Sharma, S. (2011) The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res. 2, 236-240. https://doi.org/10.4103/2231-4040.90879
  40. Umetsu, D. T. and DeKruyff, R. H. (1997) Th1 and Th2 CD4+ cells in human allergic diseases. J. Allergy Clin. Immunol. 100, 1-6. https://doi.org/10.1016/S0091-6749(97)70186-6
  41. Umetsu, D. T., McIntire, J. J., Akbari, O., Macaubas, C. and DeKruyff, R. H. (2002) Asthma: an epidemic of dysregulated immunity. Nat. Immunol. 3, 715-720. https://doi.org/10.1038/ni0802-715
  42. Xiao, B., Su, M., Kim, E. L., Hong, J., Chung, H. Y., Kim, H. S., Yin, J. and Jung, J. H. (2014) Synthesis of PPAR-${\gamma}$ activators inspired by the marine natural product, paecilocin A. Mar. Drugs 12, 926-939. https://doi.org/10.3390/md12020926

Cited by

  1. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/8906968
  2. FFA2 Activation Ameliorates 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis in Mice vol.28, pp.3, 2018, https://doi.org/10.4062/biomolther.2019.160
  3. 7α,25-Dihydroxycholesterol Suppresses Hepatocellular Steatosis through GPR183/EBI2 in Mouse and Human Hepatocytes vol.374, pp.1, 2018, https://doi.org/10.1124/jpet.120.264960
  4. Suppressive Effect of Carnosol on Ovalbumin-Induced Allergic Asthma vol.29, pp.1, 2018, https://doi.org/10.4062/biomolther.2020.050
  5. Salvianolic Acid A Suppresses DNCB-Induced Atopic Dermatitis-Like Symptoms in BALB/c Mice vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/7902592
  6. Suppressive Effect of CYM50358 S1P4 Antagonist on Mast Cell Degranulation and Allergic Asthma in Mice vol.29, pp.5, 2021, https://doi.org/10.4062/biomolther.2020.206
  7. Marine-Derived Compounds for the Potential Treatment of Glucocorticoid Resistance in Severe Asthma vol.19, pp.11, 2018, https://doi.org/10.3390/md19110586