DOI QR코드

DOI QR Code

스퍼터링 방법으로 성장한 코발트크롬철망간니켈 고엔트로피 질산화물 박막의 구조특성

Structural Characterization of CoCrFeMnNi High Entropy Alloy Oxynitride Thin Film Grown by Sputtering

  • 이정국 (충남대학교 신소재공학과) ;
  • 홍순구 (충남대학교 신소재공학과)
  • Lee, Jeongkuk (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hong, Soon-Ku (Department of Materials Science and Engineering, Chungnam National University)
  • 투고 : 2018.09.18
  • 심사 : 2018.09.28
  • 발행 : 2018.10.27

초록

This study investigates the microstructural properties of CoCrFeMnNi high entropy alloy (HEA) oxynitride thin film. The HEA oxynitride thin film is grown by the magnetron sputtering method using nitrogen and oxygen gases. The grown CoCrFeMnNi HEA film shows a microstructure with nanocrystalline regions of 5~20 nm in the amorphous region, which is confirmed by high-resolution transmission electron microscopy (HR-TEM). From the TEM electron diffraction pattern analysis crystal structure is determined to be a face centered cubic (FCC) structure with a lattice constant of 0.491 nm, which is larger than that of CoCrFeMnNi HEA. The HEA oxynitride film shows a single phase in which constituting elements are distributed homogeneously as confirmed by element mapping using a Cs-corrected scanning TEM (STEM). Mechanical properties of the CoCrFeMnNi HEA oxynitride thin film are addressed by a nano indentation method, and a hardness of 8.13 GPa and a Young's modulus of 157.3 GPa are obtained. The observed high hardness value is thought to be the result of hardening due to the nanocrystalline microstructure.

키워드

참고문헌

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T,-T. Shun, C-H. Tsau and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004). https://doi.org/10.1002/adem.200300567
  2. C.-J. Tong, Y.-L. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, C.-H. Tsau, S.-J. Lin and S.-Y. Chang, Metall. Mater. Trans., 36, 881 (2005). https://doi.org/10.1007/s11661-005-0283-0
  3. B. Murty, J.-W. Yeh, S. Ranganathan, High-entropy alloys, Butterworth-Heinemann (2014).
  4. B. Gludovatz, A. Hohenwarter, D. Catoor, E.-H. Chang, E.-P. George and R.-O.Ritchie, Science, 345, 1153 (2014). https://doi.org/10.1126/science.1254581
  5. Y.-Y.Chen, T. Duval, U.-D. Hung, J.-W. Yeh and H.-C. Shih, Corros. Sci., 47, 2257 (2005). https://doi.org/10.1016/j.corsci.2004.11.008
  6. F. Otto, A. Dlouhv, C. Somsen, H. Bei, G. Eggeler and E. P. George, Acta Mater., 61, 5743 (2013). https://doi.org/10.1016/j.actamat.2013.06.018
  7. J. Y. He, W. H. Liu, H. Wang, X. J. Liu, T. G. Nieh and Z. P. Lu, Acta Mater., 62, 105 (2014). https://doi.org/10.1016/j.actamat.2013.09.037
  8. C.-Y. Hsu, J.-W. Yeh, S.-K. Chen and T.-T. Shun, Metall. Mater. Trans. A, 35, 1465 (2004). https://doi.org/10.1007/s11661-004-0254-x
  9. Z. Li, K.-G. Pradeep, Y. Deng, D. Raabe and C.-C. Tasan, Nature, 534, 227 (2016). https://doi.org/10.1038/nature17981
  10. K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer and D. Raabe, Mater. Sci. Eng., A, 648, 183 (2015). https://doi.org/10.1016/j.msea.2015.09.010
  11. B. Schuh, F.-M. Martin, B. Volker, E. P. George, H. Clemens, R. Pippan and A. Hohenwarter, Acta Meter., 96, 258 (2015). https://doi.org/10.1016/j.actamat.2015.06.025
  12. V. Dolique, A.-L. Thomann, P. Brault, Y. Tessier and P. Gillon, Surf. Coat. Technol., 204, 1989 (2010). https://doi.org/10.1016/j.surfcoat.2009.12.006
  13. Z. F. Wu, X. D. Wang, Q. P. Cao, G. H. Zhao, J. X. Li, D. X. Zhang, J.-J. Zhu and J. Z. Jiang, J. Alloys Compd., 609, 137 (2014). https://doi.org/10.1016/j.jallcom.2014.04.094
  14. P.-C. Lin, C.-Y. Cheng, J.-W. Yeh and T.-S. Chin, Entropy, 18, 308(2016). https://doi.org/10.3390/e18080308
  15. Z. An, H. Jia, Y. Wu, P. D. Rack, A. D. Patchen, Y. Liu, Y. Ren, N. Li and P.K. Liaw, Mater. Res. Lett., 3, 203 (2015). https://doi.org/10.1080/21663831.2015.1048904
  16. L. Xie, P. Brault, A.-L. Thomann, X. Yang, Y. Zhang and G. Shang, Intermetallics, 68, 78 (2016). https://doi.org/10.1016/j.intermet.2015.09.008
  17. C.-S. Han and S.-W. Kim, Korean J. Mater. Res., 28, 159 (2018). https://doi.org/10.3740/MRSK.2018.28.3.159
  18. T. K. Chen, T. T. Shun, J. W. Yeh and M. S. Wong, Surf. Coat. Technol., 188-189, 193 (2004). https://doi.org/10.1016/j.surfcoat.2004.08.023
  19. P.-K. Huang and J.-W. Yeh, Thin Solid Films, 518, 180 (2009). https://doi.org/10.1016/j.tsf.2009.06.020
  20. B. Ren, Z. X. Liu, L. Shi, B. Cai and M. X. Wang, Appl. Surf. Sci., 257, 7172 (2011). https://doi.org/10.1016/j.apsusc.2011.03.083
  21. T.-K. Chen and M.-S. Wong, J. Mater. Res., 23, 3075 (2008). https://doi.org/10.1557/JMR.2008.0371
  22. T.-K. Chen, M.-S. Wong, Surf. Coat. Technol., 203, 495 (2008). https://doi.org/10.1016/j.surfcoat.2008.05.023
  23. Y.-S. Huang, L. Chen, H.-W. Lui, M.-H. Cai and J.-W. Yeh, Mater. Sci. Eng., A, 457, 77 (2007). https://doi.org/10.1016/j.msea.2006.12.001
  24. R.-S. Yu, R.-H. Huang, C.-M. Lee and F.-S. Shieu, Appl. Surf. Sci., 263, 58 (2012). https://doi.org/10.1016/j.apsusc.2012.08.109
  25. D.-C. Tsai, M.-J. Deng, Z.-C. Chang, B.-H. Kuo, E.-C. Chen, S.-Y. Chang, F.-S, Shieu, J. Alloy. Comp., 647, 179 (2015). https://doi.org/10.1016/j.jallcom.2015.06.025
  26. B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., Pearson, Upper Saddle River (2001).
  27. B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent, Mater. Sci. Eng., A, 375, 213(2004).
  28. H. Najafi, A. Karimi, D. Alexander, P. Dessarzin and M. Morstein, Thin Solid Films, 549, 224 (2013). https://doi.org/10.1016/j.tsf.2013.06.062
  29. H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova and J. Matejicek, Mater. Sci. Eng., A, 689, 252 (2017). https://doi.org/10.1016/j.msea.2017.02.068