DOI QR코드

DOI QR Code

Zn과 Cu 혼합 분말의 열 증발에 의하여 생성된 ZnO 결정의 형상 변화 및 발광 특성

Morphological Change and Luminescence Properties of ZnO Crystals Synthesized by Thermal Evaporation of a Mixture of Zn and Cu Powder

  • 이근형 (동의대학교 신소재공학부 전기전자소재공학전공)
  • Lee, Geun-Hyoung (Electrical & Electronic Materials Engineering Major, Division of Advanced Materials Engineering, Dong-eui University)
  • 투고 : 2018.07.11
  • 심사 : 2018.09.13
  • 발행 : 2018.10.27

초록

ZnO crystals with different morphologies are synthesized through thermal evaporation of the mixture of Zn and Cu powder in air at atmospheric pressure. ZnO crystals with wire shape are synthesized when the process is performed at $1,000^{\circ}C$, while tetrapod-shaped ZnO crystals begin to form at $1,100^{\circ}C$. The wire-shaped ZnO crystals form even at $1,000^{\circ}C$, indicating that Cu acts as a reducing agent. As the temperature increases to $1,200^{\circ}C$, a large quantity of tetrapod-shaped ZnO crystals form and their size also increases. In addition to the tetrapods, rod-shaped ZnO crystals are observed. The atomic ratio of Zn and O in the ZnO crystals is approximately 1:1 with an increasing process temperature from $1,000^{\circ}C$ to $1,200^{\circ}C$. For the ZnO crystals synthesized at $1,000^{\circ}C$, no luminescence spectrum is observed. A weak visible luminescence is detected for the ZnO crystals prepared at $1,100^{\circ}C$. Ultraviolet and visible luminescence peaks with strong intensities are observed in the luminescence spectrum of the ZnO crystals formed at $1,200^{\circ}C$.

키워드

참고문헌

  1. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science, 292, 1897 (2001). https://doi.org/10.1126/science.1060367
  2. J. Johnson, H. Yan, P. Yang and R. Saykally, J. Phys. Chem. B, 107, 8816 (2003). https://doi.org/10.1021/jp034482n
  3. J. W. Kim, D. H. Kim, T. H. Ki, J. H. Park and J. M. Myoung, Korean J. Mater. Res., 27, 658 (2017). https://doi.org/10.3740/MRSK.2017.27.12.658
  4. S. H. Hwang, K. J. Moon, T. I. Lee and J. M. Myoung, Korean J. Mater. Res., 23, 255 (2013). https://doi.org/10.3740/MRSK.2013.23.5.255
  5. N. R. Kim, J. S. Kim, D. J. Byun, D. H. Rho and J. W. Yang, Korean J. Mater. Res., 13, 668 (2003). https://doi.org/10.3740/MRSK.2003.13.10.668
  6. W. Thongsuksai, G. Panomsuwan and A. Rodchanarowan, Mater. Lett., 224, 50 (2018). https://doi.org/10.1016/j.matlet.2018.04.060
  7. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett., 4, 89 (1964). https://doi.org/10.1063/1.1753975
  8. E. I. Givargizov, J. Cryst. Growth, 31, 20 (1975). https://doi.org/10.1016/0022-0248(75)90105-0
  9. G. H. Lee, Appl. Surf. Sci., 259, 562 (2012). https://doi.org/10.1016/j.apsusc.2012.04.183
  10. Y. Dai, Y. Zhang and Z. L. Wang, Solid State Commun., 126, 629 (2003). https://doi.org/10.1016/S0038-1098(03)00277-1
  11. M. Biswas and E. McGlynn and M. O. Henry, Microelectron. J., 40, 259 (2009). https://doi.org/10.1016/j.mejo.2008.07.013
  12. X. Wang, J. Song and Z. L. Wang, Chem. Phys. Lett., 424, 86 (2006). https://doi.org/10.1016/j.cplett.2006.04.013
  13. S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, Chem. Phys. Lett., 363, 134 (2002). https://doi.org/10.1016/S0009-2614(02)01145-4