DOI QR코드

DOI QR Code

Effect of Surfactant on the Dispersion Stability of Slurry for Semiconductor Silicon CMP

계면활성제가 반도체 실리콘 CMP용 슬러리의 분산안정성에 미치는 영향

  • Received : 2018.10.05
  • Accepted : 2018.10.23
  • Published : 2018.10.28

Abstract

The improvement of dispersion stability for the primary polishing slurry in a CMP process is achieved to prevent defects produced by agglomeration of the slurry. The dispersion properties are analyzed according to the physical characteristics of each silica sol sample. Further, the difference in the dispersion stability is confirmed as the surfactant content. The dispersibility results measured by Zeta potential suggest that the dispersion properties depend on the content and size of the abrasive in the primary polishing slurry. Moreover, the optimum ratio for high dispersion stability is confirmed as the addition content of the surfactant. Based on the aforementioned results, the long-term stability of each slurry is analyzed. Turbiscan analysis demonstrates that the agglomeration occurs depending on the increasing amount of surfactant. As a result, we demonstrate that the increased particle size and the decreased content of silica improve the dispersion stability and long-term stability.

Keywords

References

  1. G. B. Basim and B. M. Moudgil: J. Colloid Interface Sci., 256 (2002) 137. https://doi.org/10.1006/jcis.2002.8352
  2. F. I. and G. Ipate: Lubricants, 5 (2017) 15. https://doi.org/10.3390/lubricants5020015
  3. C. W. Liu, B. T. Dai, W. T. Tseng and C. F. Yeh: J. Electrochem. Soc., 143 (1996) 716. https://doi.org/10.1149/1.1836507
  4. E. S. Choi and S. I. Bae: J. Korean Ceram. Soc., 44 (2007) 98. https://doi.org/10.4191/KCERS.2007.44.2.098
  5. Y. M. Ahn, J. Y. Yoon, C. W. Baek and Y. K. Kim: Wear, 257 (2004) 785 https://doi.org/10.1016/j.wear.2004.03.020
  6. R. Dylla-Spears, L. Wong, P. E. Miller, M. D. Feit, W. Steele, and T. Suratwala: Colloids Surf., A, 447 (2014) 32. https://doi.org/10.1016/j.colsurfa.2014.01.061
  7. J. M. Neirynck, G. R. Yang, S. P. Murarka and R. J. Gutmann: Thin Solid Films, 290-291 (1996) 447. https://doi.org/10.1016/S0040-6090(96)09033-5
  8. D. Ng, S. Kundu, M. Kulkarni and H. Liang: J. Electrochem. Soc., 155 (2008) H64. https://doi.org/10.1149/1.2806173
  9. B. P. Binks, J. A. Rodrigues and W. J. Frith: Langmuir, 23 (2007) 3626. https://doi.org/10.1021/la0634600
  10. Z. Zhang, W. Liu and Z. Song: Appl. Opt., 49 (2010) 5480. https://doi.org/10.1364/AO.49.005480
  11. O. Goncharuk, V. M. Gunko, A. Ugnivenko, K. Terpilowski and E. Skwarek: Nano Res. Appl., 3 (2017) 29.
  12. J. M. Byun, C. W. Park, Y. I. Kim and Y. D. Kim: J. Korean Powder Metall. Inst., 25 (2018) 257. https://doi.org/10.4150/KPMI.2018.25.3.257
  13. M. G. De Paola, V. Calabro and M. De Simone: IOP Conference Series: Mater. Sci. Eng., 251 (2017) 012122. https://doi.org/10.1088/1757-899X/251/1/012122
  14. G. S. Cho, D. H. Lee, D. S. Kim, H. M. Lim, C. Y. Kim and S. H. Lee: Korean Chem. Eng. Res., 51 (2013) 622. https://doi.org/10.9713/kcer.2013.51.5.622
  15. J. H. Lee, H. J. Hwang, K. S. Han, K. T. Hwang and J. H. Kim: Korean J. Mater. Res., 26 (2016) 570. https://doi.org/10.3740/MRSK.2016.26.10.570
  16. S. Y. Park, H. K. Jeong, M. S. Kim and K. D. Nam: J. Korean Ind. Eng. Chem., 13 (2002) 558.
  17. J. Liu, X. F. Huang, L. J. Lu, M. X. Li, J. C. Xu and H. P. Deng: J. Hazard. Mater., 190 (2011) 214. https://doi.org/10.1016/j.jhazmat.2011.03.028
  18. C. Celia, E. Trapasso, D. Cosco, D. Paolino and M. Fresta: Colloids Surf., B, 72 (2009) 155. https://doi.org/10.1016/j.colsurfb.2009.03.007