DOI QR코드

DOI QR Code

Anti-Bacterial Effect of Lactobacillus rhamnosus Cell-Free Supernatant Possessing Lysozyme Activity Against Pathogenic Bacteria

라이소자임 활성을 보유한 Lactobacillus rhamnosus 배양물의 병원성 미생물에 대한 항균 효과

  • Lee, Jiyeon (Dept. of Food Science and Nutrition, Dankook University) ;
  • Lim, Hyeji (Dept. of Food Science and Nutrition, Dankook University) ;
  • Kim, Misook (Dept. of Food Science and Nutrition, Dankook University)
  • 이지연 (단국대학교 식품영양학과) ;
  • 임혜지 (단국대학교 식품영양학과) ;
  • 김미숙 (단국대학교 식품영양학과)
  • Received : 2018.09.19
  • Accepted : 2018.10.17
  • Published : 2018.11.02

Abstract

Recently, there has been a growing demand for natural preservatives because of increased consumer interest in health. In this study, we produced Lactobacillus rhamnosus cell-free supernatant (LCFS) and evaluated and compared its antimicrobial activity with existing natural preservatives against pathogenic microorganisms and in chicken breast meat contaminated with Escherichia coli and Staphylococcus aureus. Lactobacillus rhamnosus cell-free supernatant possessed 30 units of lysozyme activity and contained 18,835 mg/L of lactic acid, 2,051 mg/L of citric acid and 5,060 mg/L of acetic acid. Additionally, LCFS inhibited the growth of fourteen pathogenic bacteria, S. aureus, Bacillus cereus, Listeria monocytogenes, Vibrio parahaemolyticus, Listeria innocua, S. epidermidis, L. ivanovii, E. coli, Pseudomonas aeruginosa, Shigella sonnei, Shi. flexneri, Proteus vulgaris, Pseudomonas fluorescens, and Klebsiella pneumoniae. The antibacterial activity of LCFS was stronger than that of egg white lysozyme (EWL), Durafresh (DF) and grapefruit seed extract (GSE). Additionally, LCFS maintained its antimicrobial activity after heat treatment at $50^{\circ}C{\sim}95^{\circ}C$ and at pH values of 3~9. Moreover, LCFS inhibited the growth of E. coli and S. aureus in chicken breast meat. In conclusion, it is expected that LCFS, which contains both lysozyme and three organic acids, will be useful as a good natural preservative in the food industry.

Keywords

References

  1. Andani HRR, Tukmechi A, Meshkini S, Sheikhzadeh N (2012): Antagonistic activity of two potential probiotic bacteria from fish intestines and investigation of their effects on growth performance and immune response in rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 28(5):728-734 https://doi.org/10.1111/j.1439-0426.2012.01974.x
  2. Barefoot SF, Chen YR, Hughes TA, Bodine AB, Shearer MY, Hughes MD (1994): Identification and purification of a protein that induces production of the Lactobacillus acidophilus bacteriocin lactacin B. Appl Environ Microbiol 60(10):3522-3528
  3. Benachour A, Ladjouzi R, Le Jeune A, Hebert L, Thorpe S, Courtin P, Chapot-Chartier MP, Prajsnar TK, Foster SJ, Mesnage S (2012): The lysozyme-induced peptidoglycan N-acetylglucosamine deacetylase PgdA (EF1843) is required for Enterococcus faecalis virulence. J Bacteriol 194(22):6066-6073 https://doi.org/10.1128/JB.00981-12
  4. Beristain-Bauza SC, Mani-Lopez E, Palou E, Lopez-Malo A (2016): Antimicrobial activity and physical properties of protein films added with cell-free supernatant of Lactobacillus rhamnosus. Food Control 62:44-51 https://doi.org/10.1016/j.foodcont.2015.10.007
  5. Chae HS, Choi HC, Na JC, Kim MJ, Kang HK, Kim DW, Kim JH, Jo SH, Kang GH, Seo OS (2012): Effect of raising periods on amino acids and fatty acids properties of chicken meat. Korean J Poult Sci 39(2):77-85 https://doi.org/10.5536/KJPS.2012.39.2.077
  6. Chang HT, Cheng YH, Wu CL, Chang ST, Chang TT, Su YC (2008): Antifungal activity of essential oil and its constituents from Calocedrus macrolepis var. formosana Florin leaf against plant pathogenic fungi. Bioresour Technol 99(14):6266-6270 https://doi.org/10.1016/j.biortech.2007.12.005
  7. Chin KB, Kim WY, Kim KH (2005): Physicochemical and textural properties, and antimicrobial effects of low-fat comminuted sausages manufactured with grapefruit seed extract. Korean J Food Sci Anim Resour 25(2):141-148
  8. Cho MH, Bae EK, Ha SD, Park JY (2005): Application of natural antimicrobials to food industry. Food Sci Ind 38(2):36-45
  9. Cho SK, Park JH (2012): Bacterial biocontrol of sprouts through ethanol and organic acids. Korean J Food Nutr 25(1):149-155 https://doi.org/10.9799/ksfan.2012.25.1.149
  10. Chouliara E, Karatapanis A, Savvaidis IN, Kontominas MG (2007): Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 degrees C. Food Microbiol 24(6):607-617 https://doi.org/10.1016/j.fm.2006.12.005
  11. Chun JW, Ma CW, Oh KH (2005): Physiological characterization of Lactobacillus sp. JK-8 isolated from shrimpaquaculture pond. Korean J Microbiology 41(1):18-23
  12. Conner DE, Scott VN, Bernard DT (1990): Growth, inhibition, and survival of Listeria monocytogenes as affected by acidic conditions. J Food Prot 53(8):652-655 https://doi.org/10.4315/0362-028X-53.8.652
  13. Coyette J, Shockman GD (1973): Some properties of the autolytic N-acetylmuramidase of Lactobacillus acidophilus. J Bacteriol 114(1):34-41
  14. Cvetnic Z, Vladimir-Knezevic S (2004): Antimicrobial activity of grapefruit seed and pulp ethanolic extract. Acta Pharm 54(3):243-250
  15. Daeschel MA, McKenney MC, McDonald LC (1990): Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiol 7(2):91-98 https://doi.org/10.1016/0740-0020(90)90014-9
  16. De Carvalho KG, Bambirra FH, Kruger MF, Barbosa MS, Oliveira JS, Santos AM, Nicoli JR, Bemquerer MP, de Miranda A, Salvucci EJ, Sesma FJ, Franco BD (2010): Antimicrobial compounds produced by Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product. J Ind Microbiol Biotechnol 37(4):381-390 https://doi.org/10.1007/s10295-009-0684-y
  17. De Keersmaecker SC, Verhoeven, TL, Desair J, Marchal K, Vanderleyden J, Nagy I (2006): Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett 259(1):89-96 https://doi.org/10.1111/j.1574-6968.2006.00250.x
  18. Gänzle MG (2004): Reutericyclin: biological activity, mode of action, and potential applications. Appl Microbiol Biotechnol 64(3):326-332 https://doi.org/10.1007/s00253-003-1536-8
  19. Gänzle MG, Höltzel A, Walter J, Jung G, Hammes WP (2000): Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66(10):4325-4333 https://doi.org/10.1128/AEM.66.10.4325-4333.2000
  20. Gill AO, Holley RA (2003): Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24 degrees C. Int J Food Microbiol 80(3):251-259 https://doi.org/10.1016/S0168-1605(02)00171-X
  21. Ha YM, Lee BB, Bae HJ, Je KM, Kim SR, Choi JS, Choi IS (2009): Anti-microbial activity of grapefruit seed extract and processed sulfur solution against human skin pathogens. J Life Sci 19(1):94-100 https://doi.org/10.5352/JLS.2009.19.1.094
  22. Hao YY, Brackett RE, Doyle MP (1998): Efficacy of plant extracts in inhibiting Aeromonas hydrophila and Listeria monocytogenes in refrigerated, cooked poultry. Food Microbiol 15(4):367-378 https://doi.org/10.1006/fmic.1997.0193
  23. Kamei K, Hara S, Ikenaka T, Murao S (1988): Amino acid sequence of a lysozyme (B-enzyme) from Bacillus subtilis YT-25. J Biochem 104(5):832-836
  24. Kim CR (2001): Microbiological and sensory evaluations of refrigerated chicken in summer. J Fd Hyg Saf 16(1):16-20
  25. Kim CR, Koh DH, Kim YJ, Kim KH, Choi IK, Eun JB (1999): Microbiological evaluations of retail and refrigerated chickens in winter. Prev Nutr Food Sci 12(2): 109-112
  26. Kim M, Park M, Jeong Y (2012): Purification and characterization of lysozyme from filipino venus, ruditapes philippinarum. Food Sci Biotechnol 21(5):1463-1468 https://doi.org/10.1007/s10068-012-0193-z
  27. Kim MR (1997): Effect of lactic acid treatment on microorganisms and sensory characteristics in chickens. Korean J Soc Food Cook Sci 13(3):293-298
  28. Kim SH, Jayasena DD, Kim HJ, Jo C, Jung S (2014): Effect of adding Lactobacillus-fermented solution on characteristics of chicken breast meat. Korean J Poult Sci 41(2):127-133 https://doi.org/10.5536/KJPS.2014.41.2.127
  29. Kong YJ, Park BK, Oh DH (2001): Antimicrobial activity of quercus mongolica leaf ethanol extract and organic acids against food-borne microorganisms. Korean J Food Sci Technol 33(2):178-183
  30. Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M (2003): Antioxidative probiotic fermented goats' milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr 90(2):449-456 https://doi.org/10.1079/BJN2003896
  31. Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, Kilk A (2002): Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 72(3):215-224 https://doi.org/10.1016/S0168-1605(01)00674-2
  32. Kwon NH, Kim SH, Bae WK, Kim JK, Lim JY, Noh KM, Kim JM, Ann JS, Huh J, Park YH (2001): Antimicrobial activity of Lactobacillus reuteri against major food-borne pathogens. Korean Soc Food Hyg Saf 16(4):264-273
  33. Lee JW, Hong SI, Son SM, Chang YH (2003): Characterization of antimicrobial polymeric films for food packaging applications. J Korean Soc Appl Biol Chem 10(4):574-583
  34. Lee JY, Park YS, Kim YS, Shin DH (2002): Antimicrobial characteristics of metabolites of lactic acid bacteria isolated from feces of newborn baby and from Dongchimi. Korean J Food Sci Technol 34(3):472-479
  35. Lee MS, Kim SH, Moon SH, Kim YH (2015): Inhibitory effects of natural additives on pathogenic microorganisms growth during storage of commercial chicken. Korean J Food Sci Technol 47(5):574-578 https://doi.org/10.9721/KJFST.2015.47.5.574
  36. Leer RJ, van der Vossen JM, van Giezen M, Van Noort JM, Pouwels PH (1995): Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141(Pt 7):1629-1635
  37. Miao J, Guo H, Ou Y, Liu G, Fang X, Liao Z, Ke C, Chen Y, Zhao L, Cao Y (2014): Purification and characterization of bacteriocin F1, a novel bacteriocin produced by Lactobacillus paracasei subsp. tolerans FX-6 from Tibetan kefir, a traditional fermented milk from Tibet, China. Food Control 42:48-53 https://doi.org/10.1016/j.foodcont.2014.01.041
  38. Miao J, Peng W, Liu G, Chen Y, Chen F, Cao Y (2015): Biopreservative effect of the natural antimicrobial substance from Lactobacillus paracasei subsp. tolerans FX-6 on fresh pork during chilled storage. Food Control 56:53-56
  39. Oh MG (2015): Antibacterial characteristics of cell-free supernatants of lysozyme producing bacteria and the mixture of lysozyme and organic acids. Ph.D thesis. Dankook University. pp. 17
  40. Park HK, Kim SB (2006): Antimicrobial activity of grapefruit seed extract. Korean J Food Nutr 19(4):526-531
  41. Pirarat N, Pinpimai K, Endo M, Katagiri T, Ponpornpisit A, Chansue N, Maita M (2011): Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res Vet Sci 91(3):e92-97 https://doi.org/10.1016/j.rvsc.2011.02.014
  42. Platas G, Meseguer I, Amils R (2002): Purification and biological characterization of halocin H1 from Haloferax mediterranei M2a. Int Microbiol 5(1):15-19 https://doi.org/10.1007/s10123-002-0053-4
  43. Rammelsberg M, Radler F (1990): Antibacterial polypeptides of Lactobacillus species. J Appl Bacteriol 69(2):177-184 https://doi.org/10.1111/j.1365-2672.1990.tb01507.x
  44. Russell SM (1997): Rapid prediction of the potential shelf-life of fresh broiler chicken carcasses under commercial conditions. J Appl Poult Res 6(2):163-168 https://doi.org/10.1093/japr/6.2.163
  45. Sarika AR, Lipton AP, Aishwarya MS (2010): Bacteriocin production by a new isolate of Lactobacillus rhamnosus GP1 under different culture conditions. Adv J Food Sci Technol 2(5):291-297
  46. Silva M, Jacobus NV, Deneke C, Gorbach SL (1987): Antimicrobial substance from a human Lactobacillus strain. Antimicrob Agents Chemother 31(8):1231-1233 https://doi.org/10.1128/AAC.31.8.1231
  47. Sowani HM, Thorat P (2012): Antimicrobial activity studies of bactoriocin produced by Lactobacilli isolates from carrot kanji. OnLine J Biol Sci 12(1):6-10 https://doi.org/10.3844/ojbsci.2012.6.10
  48. Taniguchi M, Nakazawa H, Takeda O, Kaneko T, Hoshino K, Tanaka T (1998): Production of a mixture of antimicrobial organic acids from lactose by co-culture of Bifidobacterium longum and Propionibacterium freudenreichii. Biosci Biotechnol Biochem 62(8):1522-1527 https://doi.org/10.1271/bbb.62.1522
  49. Tolinacki M, Kojic M, Lozo J, Terzic-Vidojevic A, Topisirovic L, Fira D (2010): Characterization of the bacteriocin-producing strain Lactobacillus paracasei subsp. Paracasei BGUB9. Arch Biol Sci 62(4):889-899 https://doi.org/10.2298/ABS1004889T
  50. Varsha KK, Nampoothiri KM (2016): Appraisal of lactic acid bacteria as protective cultures. Food Control 69:61-64 https://doi.org/10.1016/j.foodcont.2016.04.032
  51. Vermeiren L, Devlieghere F, Van Beest M, de Kruijf N, Debevere J (1999): Developments in the active packaging of foods. Trends Food Sci Technol 10(3):77-86
  52. Yoon SY, Lee SY, Kim KBWR, Song EJ, Lee SJ, Lee CJ, Park NB, Jung JY, Kawk JH, Nam KW, Ahn DH (2010): Antimicrobial activity of the Sargassum fulvellum ethanol extract and the effect of temperature and pH on their activity. Korean J Food Sci Technol 42(2):155-159
  53. Zhang H, Wu J, Guo X (2016): Effects of antimicrobial and antioxidant activities of spice extracts on raw chicken meat quality. Food Sci Hum Wellness 5(1):39-48 https://doi.org/10.1016/j.fshw.2015.11.003