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ABSTRACT : To improve survival rates of vitrified pig oocytes, the treatment of cytoskeletal stabilizer on an appropriate 

time is one of the possible approaches. However, the exact treatment timing and effect of cytoskeletal stabilizer such as cyto-

chalasin B (CB) is not well known during oocyte vitrification procedures. Thus, the present study was conducted to determine 

optimal treatment timing of CB during vitrification and warming procedures. In experiment 1, the survival rates of the post-

warming pig oocytes were analyzed by fluorescein diacetate (FDA) assays with 4 classifications. In results, post-warming oo-

cytes showed significantly (p<0.05) decreased number of alive oocytes (31.8% vs. 86.4%) compared to fresh control. In detail, 

the significant difference (p<0.05) was found only in strong fluorescence (18.2% vs. 70.5%) not in intermediate fluorescence 

groups (13.6% vs. 15.9%). In experiment 2, CB was treated before (CB-Vitri) and after (Vitri-CB) vitrification. In results, 

group of Vitri-CB showed significantly (p<0.05) higher (91.6%) survival rates compared to group of CB-Vitri (83.7%), sig-

nificantly (p<0.05) and comparable with group of Vitri Control (88.7%) by morphological inspection. In FDA assay results, 

group of Vitri-CB showed significantly (p<0.05) higher (44.2%) survival rates compared to groups of CB-Vitri (36.7%) and 

Vitri Control (35.1%). In conclusion, the increased survival rates of post-warming pig oocyte treated with Vitri-CB method 

are firstly described here. The main finding of present study is that the CB treatment during recovery could be helpful to re-

fresh the post-warming pig oocyte resulting its improved survival rates. 
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Cryopreservation of reproductive cells and tissues is one 

of the most important parts of biomedical and agricultural 

researches, which can be used to overcome an infertility of 

human beings and to preserve valuable genetic resources 

of endangered and transgenic animals. One of the powerful 

methods to cryopreserve reproductive cells with decreased 

cryoinjuries is ultra-rapid freezing method such as vitrifi-

cation. Recently, a vitrification method has been applied 

widely to cryopreserve the cells in the mammalian species, 

including pig (Isachenko et al., 1998), cattle (Fuku et al., 

1995), mice (Kono et al., 1991), and human (Boyer et al., 

2012). Especially in pig oocyte, it is well known that the 

oocytes matured in vitro are very difficult to cryopreserve 

because of its higher sensitivity to cryoinjuries compared 

to other mammalian oocytes like human (Fabbri et al., 

1998), cattle (Hwang et al., 2013), and small rodent (dela 
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Pena et al., 2001). 

According to our previous report, lipid content, quality, 

size, and shape of oocytes were responsible for cryotoler-

ance (Hwang & Hochi, 2014). In pig, limited studies have 

been demonstrated a successful vitrification using imma-

ture and in vitro matured oocytes (Rojas et al., 2004; 

Albarracin et al., 2005). Vitrification of in vitro-matured 

oocytes might be occur various kinds of cryoinjuries caused 

by high concentration of cryoprotectant (CPA) in the vitri-

fication medium (Hwang & Hochi, 2014). Exposure of 

oocyte to CPA has been shown to induce cryoinjuries such 

as microtubule depolymerization and premature exocytosis 

of cortical granules resulting decreased survival rates and 

developmental failure (Coticchio et al., 2009; Lowther et al., 

2009). The CPA exposed oocytes during vitrification had 

been changed not only distribution and function of mito-

chondria but also mitochondrial ultrastructure (Vallorani et 

al., 2012; Dai et al., 2015). An abnormal distribution and 

dysfunction of mitochondria in oocytes were closely in-

volved in the activation of apoptotic mechanisms resulting 

oocyte dead (Vallorani et al., 2012). Therefore, vitrification 

method for pig oocyte is still required to be improved 

much in survival, fertilization, and developmental rates 

(Mullen & Fahy, 2012; Somfai et al., 2012).  

To improve survival rates of vitrified oocytes, it is es-

sentially needed a modification of vitrification procedures, 

development of vitrification devices, and treatment of chem-

icals during a vitrification procedure. Many chemicals were 

applied during recovery culture such as signal pathway 

inhibitors, antioxidants, and cytoskeletal stabilizers (Hwang 

et al., 2013; Hwang et al., 2016; Pitchayapipatkul et al., 

2017). One of the common cytoskeletal stabilizers is cyto-

chalasin B (CB) widely applied for softening of oocyte be-

fore conducting micromanipulation such as somatic cell nu-

clear transfer because of its safety on oocytes (Hwang et 

al., 2015). Chemical treatments during post-warming culture 

after vitrification can be one of the possible approaches to 

help oocyte to regain its ability to develop. Therefore, the 

present study was conducted to determine optimal treatment 

timing of CB during vitrification and warming procedures. 

  

1. Experimental design 

In experiment 1, the survival rates of the post-warming 

pig oocytes were analyzed by fluorescein diacetate (FDA) 

assays with 4 classifications as shown in Fig. 1. After vitri-

fication/warming and recovery culture, the pig oocytes 

were stained with FDA and analyzed its survival rates. The 

oocytes with strong and intermediate green fluorescence 

were determined as alive, but weak and none signals were 

classified as dead. In experiment 2, CB was treated before 

(CB-Vitri) and after (Vitri-CB) vitrification. Then, the sur-

vival rates of post-warming oocytes were analyzed by 

morphology and FDA assay to determine an appropriate 

timing and effect of CB treatment. 

 

2. In vitro maturation oocytes 

All chemicals were purchased from Sigma-Aldrich Chemi-

cals (St. Louis, MO, USA) unless stated otherwise. Prepu-

 

Fig. 1. Categorization of viable post-warming pig oo-

cytes by FDA assay. Oocytes with strong and in-

termediate signal were determined as alive oocyte 

while weak and none signal were determined as 

dead oocyte. FDA, fluorescein diacetate.  
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bertal pig ovaries were obtained from local slaughterhouse 

Nonghyup Moguchon, Gimje, Korea) and transported to 

the laboratory within thermos containing 30℃ to 35℃ of 

saline. Then, 3–6 mm follicles were aspirated by disposa-

ble syringe with an 18 gauge needle and cumulus oocytes 

complexes (COCs) with several compact layer of cumulus 

cells were selected for in vitro maturation. The COCs were 

cultured in the hepes-buffered Tissue Culture Medium 

(TCM)-199 (Gibco BRL, NY, USA) supplemented with 

10% porcine follicular fluid (pFF), 3.05 mM D-glucose, 

0.57 mM cysteine, 0.91 mM sodium pyruvate, 0.5 μg/mL 

FSH, 0.5 μg/mL LH, 10 ng/mL EGF, 75 μg/mL penicillin 

G and 50 μg/mL streptomycin in a four-well dish for 22 h 

at 38.5℃ under 5% CO2 in air. Then the oocytes were ma-

tured in vitro within the maturation medium described 

above without FSH and LH for additional 22 h at 38.5℃ 

under 5% CO2 in air. After in vitro maturation, the oocytes 

were examined comprehensively for the extrusion of the 

first polar body after removal of cumulus cells by treat-

ment of 0.1% hyaluronidase solution with gentle pipetting. 

 

3. Vitrification and warming of oocytes 

The matured oocytes were conducted to a vitrification 

and warming according to the method described previously 

(Hwang et al., 2013). Briefly, the oocytes were equilibrat-

ed in the base medium [TCM-199 with 20% fetal bovine 

serum (FBS, Gibco BRL)], supplemented with 7.5% eth-

ylene glycol (EG), and 7.5% dimethyl sulfoxide (DMSO) 

for 5 min. Then, the equilibrated oocytes were transferred 

into the vitrification solution consisting of 20% FBS, 15% 

EG, 15% DMSO, and 0.5 M sucrose for 1 min at room 

temperature. During that time, around 15 oocytes were 

mounted onto the tip of the Cryotop (Kitazato BioPharma, 

Shizuoka, Japan) with a minimal volume of the vitrifica-

tion solution (< 0.1 μL) and then quickly plunged into liq-

uid nitrogen (LN2). After storage for more than 1 week in 

the LN2, the vitrified oocytes were warmed by soaking the 

tip of the Cryotop into the pre-warmed base medium con-

taining 1 M sucrose at 38.5℃ for 1 min. Then, the oocytes 

were transferred into the base medium containing 0.5, 

0.25, and 0 M sucrose (for 3, 5, and 5 min, respectively) at 

room temperature (25.0℃). The predicted freezing and warm-

ing rates of the Cryotop method informed by the manufac-

turer were –23,000 and 42,000℃ /min, respectively.  

 

4. Recovery culture and treatment of cytochalasin B 

After vitrification and warming, the oocytes were washed 

3 times and conducted to recovery culture with TCM-199 

with 5% FBS, 0.2 mM sodium pyruvate, 75 μg/mL penicil-

lin G, and 50 μg/mL streptomycin in a 4-well dish for 2 h 

at 38.5℃ under 5% CO2 in air (30 oocytes per well). The 

CB was treated before (CB-Vitri) vitrification procedure 

for 30 minutes and after (Vitri-CB) vitrification procedure 

from start of recovery culture for 30 minutes with concen-

tration of 7.5 μg/mL.  

 

5. Analysis of post-warming survival rates 

The survival of post-warming oocytes was evaluated 

based on our previous study (Hwang et al., 2013). Briefly, 

the survival was estimated by morphological changes on 

oolemma and zona pellucida firstly. Demarcation of mem-

brane, zona pellucida fracture, and cytoplasmic distribu-

tion were comprehensively checked by microscope. Then, 

the survival rates based on esterase enzyme activity by 

FDA assay was assessed. After recovery culture with or 

without CB, the oocytes were washed 3 times in PBS for 1 

min, followed by incubation with 2.5 mg/mL of FDA for 1 

min. Then, the oocytes were washed 3 times again in PBS 

containing 0.1% BSA and observed under an epifluores-

cence microscope (Leica Microsystems, Wetzlar, Germa-

ny). As shown in Fig. 1, the alive oocytes showed strong 

and intermediate green fluorescence, whereas the dead 

oocytes showed a weak or none fluorescent signals. 

 

6. Statistical analysis 

All experiments were replicated at least 4 times in each 
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group. All data were analyzed by Origin 8 software (Ori-

ginLab Corporation, Northampton, MA, USA) by applying 

one-way analysis of variance with arcsine transformation. 

A value of p<0.05 was considered to be significant.  

 

1. Survival rates of post-warming pig oocytes 

According to the results indicated in the Table 1, the 

post-warming oocytes showed significantly decreased the 

number of the alive compared to the fresh control (31.8% 

vs. 86.4%) (p<0.05). In detail, the significant difference 

(p<0.05) was found only in strong fluorescence (18.2% vs. 

70.5%), but not in intermediate fluorescence groups (13.6% 

vs. 15.9%). On the other hand, the number of the dead 

oocytes were significantly increased (68.2% vs. 13.6%) 

compared to fresh control (p<0.05). The rates of the dead 

oocytes in both weak (40.9% vs. 13.6%) and none (27.3% 

vs. 0.0%) fluorescence groups were significantly different 

compared to the fresh control (p<0.05), respectively.  

 

2. Effect of CB treatment timing on vitrified-warmed 

pig oocytes 

Pig oocytes were treated with CB before and after vitri-

fication procedures to determine appropriate treatment ti-

ming for the improvement of survival rates in the post-

worming oocytes. After recovery culture, all the vitrified 

oocytes were subjected to test its viability by morphologi-

cal inspection and FDA assay. As shown in Table 2, the 

Vitri-CB group showed significantly higher survival rates 

Table 1. Survival rates of post-warming pig oocytes examined by FDA assay 

Groups 

No. of oo-

cytes exam-

ined 

No. of oocytes determined as* 

Alive (%)  Dead (%) 

Strong Intermediate Total  Weak None Total 

Fresh control 44 31 (70.5)a 7 (15.9) a 38 (86.4)a   6(13.6)a  0 (0.0)a  6 (13.6)a 

Post-warming 44 8 (18.2)b 6 (13.6)a 14 (31.8)b  18 (40.9)b 12 (27.3)b 30 (68.2)b 

* Data are represented as total number (mean) of four replicates in each group.  
a,b Different superscripts denote significance within columns (p<0.05). 

FDA, fluorescein diacetate. 

Table 2. Effect of Cytochalasin B on viability of post-warming pig oocytes 

Groups 
No. of  

oocytes examined 

No. of survived oocytes analyzed by (%)* 

Morphology FDA assay 

Fresh control 57 57 (100±0.0)a 48 (84.2±1.6)a 

Vitri-control 97 86 (88.7±2.8)bc 34 (35.1±1.5)c 

CB-Vitri 98 81 (83.7±2.6)c 36 (36.7±1.6)c 

Vitri-CB 95 95 (91.6±2.6)b 42 (44.2±1.0)b 
 

* Data are represented as total number (mean±SEM) of four replicates in each group.  
a-c Different superscripts denote significance within columns (p<0.05).  

FDA, fluorescein diacetate; Vitri-Control, vitrification only; CB-Vitri, CB treatment before vitrification/warming; Vitri-

CB, CB treatment after vitrification/warming. 
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(91.6% vs. 83.7%) in morphological inspection compared 

to the CB-Vitri group (p<0.05), respectively, but lower 

than that of the Fresh Control (100.0%) (p<0.05). Interest-

ingly, the CD-Vitri group showed comparably lower sur-

vival rate than that of Vitri-Control (88.7%). According to 

the results of FDA assay, the Vitri-CB group showed sig-

nificantly higher (44.2%) survival rates compared to CB-

Vitri (36.7%) and Vitri-Control (35.1%) groups (p<0.05), 

respectively.  

 

Morphological inspection of an oocyte quality and via-

bility by assessment of morphological changes on oolem-

ma and zona pellucida is widely used to select good quali-

ty oocytes and embryos (Van Soom et al., 2003; Hama-

mah, 2005). To determine the viability and quality of oo-

cyte, demarcation of membrane, perivitelline space, zona 

pellucida fracture, and cytoplasmic distribution were firstly 

needed to be checked before conducting the next step of 

experiment associated with assisted reproductive technolo-

gy (Wang & Sun, 2006; Balaban et al., 2012). However, 

the result of morphological assessment does not reflect 

always to fertilization rates and oocyte/embryo quality 

after conducting assisted reproductive technology (De 

Sutter et al., 1996; Balaban et al., 1998; Hwang et al., 

2016). Previous study showed that high survival rates by 

morphological inspection did not reflect high quality of 

oocyte/embryo and developmental competence (Hwang et 

al., 2016).  

On the other hand, the FDA assay has been widely ap-

plied to determine the viability and quality of embryos 

(Mohr & Trounson, 1980; Noto et al., 1991) and oocytes 

(Didion et al., 1990; Hwang et al., 2016). Because many 

lipid droplets were in cytoplasm of pig and cattle oocytes, 

the oocytes were not visible inside by microscope (Kikuchi 

et al., 2002). Therefore, the FDA assay to determine sur-

vival rates and to compare the difference with survival 

rates by morphological inspection of post-warming pig 

oocytes. 

In the present study, the survival rate of the post-

worming oocytes was different between morphological 

inspection and FDA assay. Although high rate of the vitri-

fied oocytes looked like survive (83.7% to 91.6%) by 

morphological inspection, the survive rate of the oocytes 

was decreased (35.1% to 44.2%) by FDA assay. It can be 

postulated that the morphological inspection was not suffi-

cient to assess viability, at least in the post-warming pig 

oocyte. To improve the accuracy of FDA assay result, it 

was subdivided into 4 classifications of strong, intermedi-

ate, weak, and none green fluorescence as shown in Fig. 1. 

As shown Table 1, the post-warming pig oocytes vitrified 

by conventional vitrification protocol showed significantly 

(p<0.05) decreased numbers of alive oocytes compared to 

the Fresh Control group like our previous study (Hwang et 

al., 2016). It could be understood that the decreased sur-

vival rates were caused by subdivided categorization of 

alive and dead oocytes. And this result could be indicated 

that the post-warming oocytes were well divided into alive 

and dead because only the oocyte having higher enzymatic 

activity (activation of fluorescence) and cell-membrane 

integrity (retention of fluorescent) can be detected strong 

and intermediate green fluorescence. In the present study, 

the increased number of weak fluorescence in the post-

warming oocytes could be indicated that the oocytes lost 

enzymatic activity and cell-membrane integrity during 

vitrification procedures.  

To overcome cryoinjuries occurred by vitrification pro-

cedures, many kinds of attempts have been applied directly 

or indirectly to the oocyte and embryo in many species 

(Hwang et al., 2013; Chasombat et al., 2015; Hwang et al., 

2016). In the present study, it was focused on the physical 

damages of the oocytes during vitrification procedures. It 

is well known that the vitrification procedures could affect 

cytoskeletal damage such microtubule dysfunction, spindle 

disorder, and mitochondrial function (Hara et al., 2012; 
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Almasi Turk & Roozbehi, 2013; Amoushahi et al., 2017). 

In the present study, we also tried to determine the appro-

priate timing for CB treatment either before or after vitrifi-

cation procedure. Based on our results, the optimal timing 

of CB treatment was immediately after warming during 

recovery culture. The CB treatment before vitrification 

showed adverse effect on the survival rates of the post-

warming oocytes similar with previous study (Marco-Ji-

menez et al., 2012). We concluded that this phenomenon 

might be related to shrinkage during vitrification proce-

dure. The oocytes vitrified by CB might be shrunk easier 

than untreated oocyte because of its softened cytoskeletal 

followed by more difficult to swell up during warming.  

In conclusion, the application of subdividing method is 

a very delicated method to determine the viability of post-

warming pig oocyte. Also, the increased survival rates of 

post-warming pig oocyte treated with Vitri-CB method are 

firstly described here. The main finding is that short-term 

(30 min) treatment of the CB during recovery culture could 

be helpful to refresh the post-warming pig oocyte resulting 

improved survival rates.   

 

This work was carried out with the support of "Animal 

Science & Technology Development (Project No. PJ01335 

401)" from Rural Development Administration, Korea. 
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