과제정보
연구 과제 주관 기관 : Yonsei University College of Medicine
참고문헌
- Lin CC, Tsai MH, Huang CC, Hua CH, Tseng HC, Huang ST. Parotid tumors: a 10-year experience. Am J Otolaryngol 2008;29:94-100 https://doi.org/10.1016/j.amjoto.2007.03.002
- Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. Radiographics 2004;24:1679-1691 https://doi.org/10.1148/rg.246045065
- Geyer LL, Schoepf UJ, Meinel FG, Nance JW Jr, Bastarrika G, Leipsic JA, et al. State of the art: iterative CT reconstruction techniques. Radiology 2015;276:339-357 https://doi.org/10.1148/radiol.2015132766
- Halpern EJ, Gingold EL, White H, Read K. Evaluation of coronary artery image quality with knowledge-based iterative model reconstruction. Acad Radiol 2014;21:805-811 https://doi.org/10.1016/j.acra.2014.02.017
- Khawaja RDA, Singh S, Blake M, Harisinghani M, Choy G, Karaosmanoglu A, et al. Ultra-low dose abdominal MDCT: using a knowledge-based iterative model reconstruction technique for substantial dose reduction in a prospective clinical study. Eur J Radiol 2015;84:2-10 https://doi.org/10.1016/j.ejrad.2014.09.022
- Park SB, Kim YS, Lee JB, Park HJ. Knowledge-based iterative model reconstruction (IMR) algorithm in ultralow-dose CT for evaluation of urolithiasis: evaluation of radiation dose reduction, image quality, and diagnostic performance. Abdom Imaging 2015;40:3137-3146 https://doi.org/10.1007/s00261-015-0504-y
- Ryu YJ, Choi YH, Cheon JE, Ha S, Kim WS, Kim IO. Knowledgebased iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom. Pediatr Radiol 2016;46:303-315 https://doi.org/10.1007/s00247-015-3486-6
- Shrimpton PC, Hillier MC, Lewis MA, Dunn M. National survey of doses from CT in the UK: 2003. Br J Radiol 2006;79:968-980 https://doi.org/10.1259/bjr/93277434
- Jessen KA, Panzer W, Shrimpton PC, Bongartz G, Gelejins J, Tosi G, et al. EUR 16262: European guidelines on quality criteria for computed tomography. Luxembourg: Office for Official Publications of the European Communities, 2000
- Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-174 https://doi.org/10.2307/2529310
- Hu Y, Pan S, Zhao X, Guo W, He M, Guo Q. Value and clinical application of orthopedic metal artifact reduction algorithm in CT scans after orthopedic metal implantation. Korean J Radiol 2017;18:526-535 https://doi.org/10.3348/kjr.2017.18.3.526
- Lim HJ, Chung MJ, Shin KE, Hwang HS, Lee KS. The impact of iterative reconstruction in low-dose computed tomography on the evaluation of diffuse interstitial lung disease. Korean J Radiol 2016;17:950-960 https://doi.org/10.3348/kjr.2016.17.6.950
- Choi DS, Na DG, Byun HS, Ko YH, Kim CK, Cho JM, et al. Salivary gland tumors: evaluation with two-phase helical CT. Radiology 2000;214:231-236 https://doi.org/10.1148/radiology.214.1.r00ja05231
- Shepp LA, Logan BF. The Fourier reconstruction of a head section. IEEE Trans Nucl Sci 1974;21:21-43
- Seibert JA. Iterative reconstruction: how it works, how to apply it. Pediatr Radiol 2014;44 Suppl 3:431-439 https://doi.org/10.1007/s00247-014-3102-1
- Hendrick RE. Breast MRI: fundamentals and technical aspects. New York, NY: Springer Science & Business Media, 2007
- Yasaka K, Katsura M, Akahane M, Sato J, Matsuda I, Ohtomo K. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction. Springerplus 2013;2:209 https://doi.org/10.1186/2193-1801-2-209
- Sidky EY, Pan X. Image reconstruction in circular conebeam computed tomography by constrained, total-variation minimization. Phys Med Biol 2008;53:4777-4807 https://doi.org/10.1088/0031-9155/53/17/021
- Qi H, Chen Z, Zhou L. CT image reconstruction from sparse projections using adaptive TpV regularization. Comput Math Methods Med 2015;2015:354869
- Mehta D, Thompson R, Morton T, Dhanantwari A, Shefer E. Iterative model reconstruction: simultaneously lowered computed tomography radiation dose and improved image quality. Med Phys Int J 2013;2:147-155
- Boone JM. Determination of the presampled MTF in computed tomography. Med Phys 2001;28:356-360 https://doi.org/10.1118/1.1350438
- Siewerdsen JH, Cunningham IA, Jaffray DA. A framework for noise-power spectrum analysis of multidimensional images. Med Phys 2002;29:2655-2671 https://doi.org/10.1118/1.1513158
피인용 문헌
- A Glimpse on Trends and Characteristics of Recent Articles Published in the Korean Journal of Radiology vol.20, pp.12, 2019, https://doi.org/10.3348/kjr.2019.0928
- Size and volume of kidney stones in computed tomography: Influence of acquisition techniques and image reconstruction parameters vol.132, pp.None, 2018, https://doi.org/10.1016/j.ejrad.2020.109267
- Comparison of lung image quality between CT Ark and Brilliance 64 CT during COVID-19 vol.21, pp.1, 2018, https://doi.org/10.1186/s12880-021-00720-2
- A deep-learning reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography vol.146, pp.None, 2022, https://doi.org/10.1016/j.ejrad.2021.110070