DOI QR코드

DOI QR Code

Histogram Analysis of Diffusion Kurtosis Magnetic Resonance Imaging for Diagnosis of Hepatic Fibrosis

  • Sheng, Ruo-Fan (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging) ;
  • Jin, Kai-Pu (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging) ;
  • Yang, Li (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging) ;
  • Wang, He-Qing (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging) ;
  • Liu, Hao (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging) ;
  • Ji, Yuan (Department of Pathology, Zhongshan Hospital, Fudan University) ;
  • Fu, Cai-Xia (MR Collaboration NEA, Siemens Ltd.) ;
  • Zeng, Meng-Su (Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging)
  • Received : 2017.07.05
  • Accepted : 2018.02.09
  • Published : 2018.10.01

Abstract

Objective: To investigate the diagnostic value of diffusion kurtosis imaging (DKI) histogram analysis in hepatic fibrosis staging. Materials and Methods: Thirty-six rats were divided into carbon tetrachloride-induced fibrosis groups (6 rats per group for 2, 4, 6, and 8 weeks) and a control group (n = 12). MRI was performed using a 3T scanner. Histograms of DKI were obtained for corrected apparent diffusion (D), kurtosis (K) and apparent diffusion coefficient (ADC). Mean, median, skewness, kurtosis and 25th and 75th percentiles were generated and compared according to the fibrosis stage and inflammatory activity. Results: A total of 35 rats were included, and 12, 5, 5, 6, and 7 rats were diagnosed as F0-F4. The mean, median, 25th and 75th percentiles, kurtosis of D map, median, 25th percentile, skewness of K map, and 75th percentile of ADC map demonstrated significant correlation with fibrosis stage (r = -0.767 to 0.339, p < 0.001 to p = 0.039). The fibrosis score was the independent variable associated with histogram parameters compared with inflammatory activity grade (p < 0.001 to p = 0.041), except the median of K map (p = 0.185). Areas under the receiver operating characteristic curve of D were larger than K and ADC maps in fibrosis staging, although no significant differences existed in pairwise comparisons (p = 0.0512 to p = 0.847). Conclusion: Corrected apparent diffusion of DKI histogram analysis provides added value and better diagnostic performance to detect various liver fibrosis stages compared with ADC.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation

References

  1. Polasek M, Fuchs BC, Uppal R, Schuhle DT, Alford JK, Loving GS, et al. Molecular MR imaging of liver fibrosis: a feasibility study using rat and mouse models. J Hepatol 2012;57:549-555 https://doi.org/10.1016/j.jhep.2012.04.035
  2. Faria SC, Ganesan K, Mwangi I, Shiehmorteza M, Viamonte B, Mazhar S, et al. MR imaging of liver fibrosis: current state of the art. Radiographics 2009;29:1615-1635 https://doi.org/10.1148/rg.296095512
  3. Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: concept to treatment. J Hepatol 2015;62(1 Suppl):S15-S24 https://doi.org/10.1016/j.jhep.2015.02.039
  4. Yoon JH, Lee JM, Baek JH, Shin CI, Kiefer B, Han JK, et al. Evaluation of hepatic fibrosis using intravoxel incoherent motion in diffusion-weighted liver MRI. J Comput Assist Tomogr 2014;38:110-116 https://doi.org/10.1097/RCT.0b013e3182a589be
  5. Ahn SJ, Lee JM, Chang W, Lee SM, Kang HJ, Yang H, et al. Prospective validation of intra- and interobserver reproducibility of a new point shear wave elastographic technique for assessing liver stiffness in patients with chronic liver disease. Korean J Radiol 2017;18:926-935 https://doi.org/10.3348/kjr.2017.18.6.926
  6. Lee GM, Kim YR, Ryu JH, Kim TH, Cho EY, Lee YH, et al. Quantitative measurement of hepatic fibrosis with gadoxetic acid-enhanced magnetic resonance imaging in patients with chronic hepatitis B infection: a comparative study on aspartate aminotransferase to platelet ratio index and fibrosis-4 index. Korean J Radiol 2017;18:444-451 https://doi.org/10.3348/kjr.2017.18.3.444
  7. Xie S, Li Q, Cheng Y, Zhang Y, Zhuo Z, Zhao G, et al. Impact of liver fibrosis and fatty liver on T1rho measurements: a prospective study. Korean J Radiol 2017;18:898-905 https://doi.org/10.3348/kjr.2017.18.6.898
  8. Jensen JH, Helpern JA, Ramani A, Lu HZ, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005;53:1432-1440 https://doi.org/10.1002/mrm.20508
  9. Rosenkrantz AB, Sigmund EE, Winnick A, Niver BE, Spieler B, Morgan GR, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: preliminary experience in fresh liver explants. Magn Reson Imaging 2012;30:1534-1540 https://doi.org/10.1016/j.mri.2012.04.020
  10. Sheng RF, Wang HQ, Yang L, Jin KP, Xie YH, Chen CZ, et al. Diffusion kurtosis imaging and diffusion-weighted imaging in assessment of liver fibrosis stage and necroinflammatory activity. Abdom Radiol (NY) 2017;42:1176-1182 https://doi.org/10.1007/s00261-016-0984-4
  11. Hu XX, Yang ZX, Liang HY, Ding Y, Grimm R, Fu CX, et al. Whole-tumor MRI histogram analyses of hepatocellular carcinoma: correlations with Ki-67 labeling index. J Magn Reson Imaging 2017;46:383-392 https://doi.org/10.1002/jmri.25555
  12. Huang YQ, Liang HY, Yang ZX, Ding Y, Zeng MS, Rao SX. Value of MR histogram analyses for prediction of microvascular invasion of hepatocellular carcinoma. Medicine (Baltimore) 2016;95:e4034 https://doi.org/10.1097/MD.0000000000004034
  13. Fujimoto K, Tonan T, Azuma S, Kage M, Nakashima O, Johkoh T, et al. Evaluation of the mean and entropy of apparent diffusion coefficient values in chronic hepatitis C: correlation with pathologic fibrosis stage and inflammatory activity grade. Radiology 2011;258:739-748 https://doi.org/10.1148/radiol.10100853
  14. Choi JY, Kim H, Sun M, Sirlin CB. Histogram analysis of hepatobiliary phase MR imaging as a quantitative value for liver cirrhosis: preliminary observations. Yonsei Med J 2014;55:651-659 https://doi.org/10.3349/ymj.2014.55.3.651
  15. Kim H, Park SH, Kim EK, Kim MJ, Park YN, Park HJ, et al. Histogram analysis of gadoxetic acid-enhanced MRI for quantitative hepatic fibrosis measurement. PLoS One 2014;9:e114224 https://doi.org/10.1371/journal.pone.0114224
  16. Lagadec M, Doblas S, Giraudeau C, Ronot M, Lambert SA, Fasseu M, et al. Advanced fibrosis: correlation between pharmacokinetic parameters at dynamic gadoxetate-enhanced MR imaging and hepatocyte organic anion transporter expression in rat liver. Radiology 2015;274:379-386 https://doi.org/10.1148/radiol.14140313
  17. Dong D, Yin L, Qi Y, Xu L, Peng J. Protective effect of the total saponins from Rosa laevigata michx fruit against carbon tetrachloride-induced liver fibrosis in rats. Nutrients 2015;7:4829-4850 https://doi.org/10.3390/nu7064829
  18. Tamada T, Prabhu V, Li J, Babb JS, Taneja SS, Rosenkrantz AB. Prostate cancer: diffusion-weighted MR imaging for detection and assessment of aggressiveness-comparison between conventional and kurtosis models. Radiology 2017;284:100-108 https://doi.org/10.1148/radiol.2017162321
  19. Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. Hepatology 1996;24:289-293 https://doi.org/10.1002/hep.510240201
  20. Karlik SJ. Exploring and summarizing radiologic data. AJR Am J Roentgenol 2003;180:47-54 https://doi.org/10.2214/ajr.180.1.1800047
  21. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837-845 https://doi.org/10.2307/2531595
  22. Liang HY, Huang YQ, Yang ZX, Ying D, Zeng MS, Rao SX. Potential of MR histogram analyses for prediction of response to chemotherapy in patients with colorectal hepatic metastases. Eur Radiol 2016;26:2009-2018 https://doi.org/10.1007/s00330-015-4043-2
  23. Taouli B, Chouli M, Martin AJ, Qayyum A, Coakley FV, Vilgrain V. Chronic hepatitis: role of diffusion-weighted imaging and diffusion-tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imaging 2008;28:89-95 https://doi.org/10.1002/jmri.21227
  24. Lambregts DM, Martens MH, Quah RC, Nikiforaki K, Heijnen LA, Dejong CH, et al. Whole-liver diffusion-weighted MRI histogram analysis: effect of the presence of colorectal hepatic metastases on the remaining liver parenchyma. Eur J Gastroenterol Hepatol 2015;27:399-404 https://doi.org/10.1097/MEG.0000000000000316
  25. Anderson SW, Barry B, Soto J, Ozonoff A, O'Brien M, Jara H. Characterizing non-gaussian, high b-value diffusion in liver fibrosis: stretched exponential and diffusional kurtosis modeling. J Magn Reson Imaging 2014;39:827-834 https://doi.org/10.1002/jmri.24234
  26. Drevelegas K, Nikiforaki K, Constantinides M, Papanikolaou N, Papalavrentios L, Stoikou I, et al. Apparent diffusion coefficient quantification in determining the histological diagnosis of malignant liver lesions. J Cancer 2016;7:730-735 https://doi.org/10.7150/jca.14197
  27. Asayama Y, Nishie A, Ishigami K, Ushijima Y, Takayama Y, Okamoto D, et al. Histogram analysis of noncancerous liver parenchyma on gadoxetic acid-enhanced MRI: predictive value for liver function and pathology. Abdom Radiol (NY) 2016;41:1751-1757 https://doi.org/10.1007/s00261-016-0753-4
  28. Lambregts DM, Beets GL, Maas M, Curvo-Semedo L, Kessels AG, Thywissen T, et al. Tumour ADC measurements in rectal cancer: effect of ROI methods on ADC values and interobserver variability. Eur Radiol 2011;21:2567-2574 https://doi.org/10.1007/s00330-011-2220-5

Cited by

  1. Value of whole-liver apparent diffusion coefficient histogram analysis for quantification of liver fibrosis stages vol.1, pp.1, 2018, https://doi.org/10.1007/s42058-019-00004-3
  2. Differentiating mild and substantial hepatic fibrosis from healthy controls: a comparison of diffusion kurtosis imaging and conventional diffusion-weighted imaging vol.61, pp.8, 2018, https://doi.org/10.1177/0284185119889566
  3. Histogram analysis in prostate cancer: a comparison of diffusion kurtosis imaging model versus monoexponential model vol.61, pp.10, 2018, https://doi.org/10.1177/0284185120901504