DOI QR코드

DOI QR Code

Study on Radar Detection of One Stratiform Cloud Precipitation Process in the Central Part of the Tianshan Mountains in China

  • Wang, Minzhong (Institute of Desert Meteorology, China Meteorological Administration) ;
  • Ming, Hu (Institute of Desert Meteorology, China Meteorological Administration)
  • Received : 2018.01.04
  • Accepted : 2018.08.13
  • Published : 2018.08.31

Abstract

In order to investigate the physical structure characteristics of the clouds and precipitation over the Tianshan Mountains in summer, the Urumqi Institute of Desert Meteorology of China Meteorological Administration (CMA) carried out an atmospheric detection experiment in Bayanbulak from 1st to 31st August 2012 by means of a wind-profiling radar and a Doppler weather radar. Using the radar observation data, this paper analyzes the dynamic, thermodynamic, radar echo intensity and macro-micro structure characteristics of the 2-3 August precipitation process. The results show that: (1) The radar echo intensity of this rainfall process changes within 5-38 dBZ, and the precipitation cloud system is under the height of 6500 m, with notable $0^{\circ}C$ level echo bright band between 1200 m and 2000 m height. NCEP analysis data shows that the cloud top temperature ranges from $-25^{\circ}C$ to $-32^{\circ}C$. These indicate the features of typical stratiform cold cloud precipitation. (2) Atmospheric motion during the precipitation process presents the multi-layer structure with wind velocity varying within the range of 3.0-8.0 m/s. The temperature advection is presented with the vertical structure distribution of "cold-warm-cold", which indicates relative stability of the atmospheric stratification. (3) By retrieving and analyzing the raindrop size distributions below $0^{\circ}C$ level bright band within 600-1200 m height, when the precipitation evolve from early stage to its peak stage, the concentration of the tiny particle zone ($D{\leq}2.5mm$) changes a little while the concentration of the medium particle zone ($2.5<D{\leq}4mm$) and the concentration of the large particle(D > 4 mm) increase considerably; but after peak stage the concentration in the medium particle zone and the concentration in the large particle zone decline first, then the concentration in the tiny particle zone reduces. (4) Raindrop size distribution data is used to calculate the precipitation intensity and the liquid water content, whose spatial-temporal variation characteristics are the same. During peak stage of the precipitation, the instantaneous precipitation intensity reaches 5.0 mm/h, and the liquid water content reaches $0.35g/m^3$. This study would help deepen the understanding on the physical structure of the clouds and precipitation over the Tianshan Mountains in summer, and also provide some scientific basis for cloud seeding operation over this area.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Brown, P.R.A., Swann, H.A.: Evaluation of key microphysical parameters in three-dimensional cloud-model simulations using aircraft and multiparameter radar data. Quart. J. Royal Meteor. Soc. 123, 2245-2275 (1997) https://doi.org/10.1002/qj.49712354406
  2. Choi, H., Bindschadler, R.: Cloud detection in Landsat imagery of ice sheets using shadow matching technique and automatic normalized difference snow index threshold value decision. Remote Sens. Environ. 91, 237-242 (2004) https://doi.org/10.1016/j.rse.2004.03.007
  3. Deshpande, S.M., Raj, P.E.: UHF wind profiler observations during a tropical pre-monsoon thunderstorm - a case study. Atmos. Res. 93, 179-187 (2009) https://doi.org/10.1016/j.atmosres.2008.10.006
  4. Ecklund,W.L., Gage, K.S.,Williams, C.R.: Tropical precipitation studies using a 915-MHz wind profiler. Radio Sci. 30, 1055-1064 (1995) https://doi.org/10.1029/95RS00640
  5. Foote, G.B., Toit, P.S.D.: Terminal velocity of raindrops aloft. J. Appl. Meteorol. 8(8), 249-253 (1969) https://doi.org/10.1175/1520-0450(1969)008<0249:TVORA>2.0.CO;2
  6. Gage, K.S., Williams, C.R., Ecklund, W.L.: Application of the 915 MHz profiler for diagnosing and classifying tropical precipitating cloud systems. Meteorog. Atmos. Phys. 59, 141-151 (1996) https://doi.org/10.1007/BF01032005
  7. Germann, U., Galli, G., Boscacci, M., Bolliger, M.: Radar precipitation measurement in a mountainous region. Quart. J. Royal Meteor. Soc. 132, 1669-1692 (2006) https://doi.org/10.1256/qj.05.190
  8. Gu, Z.C.: Physical Basis of Cloud and Mist Precipitation (Pp.50-65). China. Science Press, Beijing, China (1980)
  9. Gunn, R., Kinzer, G.D.: The terminal fall velocity for water droplets in stagnant air. J. Atmos. Sci. 6(4), 243-248 (1949)
  10. He, P.: Phased array wind profiler radar (pp. 69-77). China Meteorological Press, Beijing, China (2006)
  11. Herzegh, P.H., Hobbs, P.V.: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones II: warm-frontal clouds. J. Atmos. Sci. 37, 597-611 (1980) https://doi.org/10.1175/1520-0469(1980)037<0597:TMAMSA>2.0.CO;2
  12. Hobbs, P.V.: Organization and structure of clouds and precipitation on the mesoscale and microscale in cyclonic storms. Rev. Geophys. 16, 741-755 (1978) https://doi.org/10.1029/RG016i004p00741
  13. Hobbs, P.V., Persson, P.O.G.: Themesoscale andmicroscale structure and organization of clouds and precipitation in midlatitude cyclones. Part V: the substructure of narrow cold-frontal rainbands. J. Atmos. Sci. 39, 280-295 (1982) https://doi.org/10.1175/1520-0469(1982)039<0280:TMAMSA>2.0.CO;2
  14. Hobbs, P.V., Matejka, T.J., Herzegh, P.H., Locatelli, J.D., Houze, R.A.: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones I: a case study of a cold front. J. Atmos. Sci. 37, 568-596 (1980) https://doi.org/10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2
  15. Hong, Y.C., Zhou, F.F.: A numerical simulation study of precipitation formation mechanism of "seeding-feeding" cloud system. Chinese J. Atmos Sci (in Chinese). 29(6), 885-896 (2005)
  16. Hou, T.J., Hu, Z.X., Lei, H.C.: A study of the structure andmicrophysical processes of a precipitating stratiform cloud in Jilin. Acta Meteor Sinica (in Chinese). 69, 508-520 (2011)
  17. Hu, Z.X., Lei, H.C., Guo, X.L., Jin, D.Z., Qi, Y.B.: Studies of the structure of a stratiform cloud and the physical processes of precipitation formation. Chinese J. Atmos Sci (in Chinese). 31(3), 425-439 (2007)
  18. Iguchi, T., Kozu, T., Meneghini, R., Awaka, J., Okamoto, K.: Rainprofiling algorithm for the TRMM precipitation radar. J. Appl. Meteorol. 39, 2038-2052 (2000) https://doi.org/10.1175/1520-0450(2001)040<2038:RPAFTT>2.0.CO;2
  19. Janowiak, J.E., Xie, P.P.: CAMS-OPI: a global satellite-rain gauge merged product for real-time precipitation monitoring applications. J. Clim. 12, 3335-3342 (1999) https://doi.org/10.1175/1520-0442(1999)012<3335:COAGSR>2.0.CO;2
  20. Jorgensen, D.F.: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: general observations by research aircraft. J. Atmos. Sci. 41, 1268-1285 (1984) https://doi.org/10.1175/1520-0469(1984)041<1268:MACSCO>2.0.CO;2
  21. King, M.D., Platnick, S., Yang, P., Arnold, G.T., Gray, M.A., Riedi, J.C., Ackerman, S.A., Liou, K.N.: Remote sensing of liquid water and ice cloud optical thickness and effective radius in the arctic: application of airborne multispectral MAS data. J. Atmos. Ocean. Technol. 21, 857-875 (2004) https://doi.org/10.1175/1520-0426(2004)021<0857:RSOLWA>2.0.CO;2
  22. Lei, H.C., Hong, Y.C., Zhao, Z., Xiao, H., Guo, X.L.: Advances in cloud and precipitation physics and weather modification in recent years. Chinese J. Atmos Sci (in Chinese). 32, 967-974 (2008)
  23. Li, D.S.: The Status Quo and Prospect of the Weather Modification (pp. 50-60). China Meteorological Press, Beijing, China (2002)
  24. Meng, Z.Y., Xu, X.D., Chen, L.S.: TBB-nudging four-dimensional data assimilation method and simulations on heavy rain process in Wuhan on 20 July, 1998. Chinese J. Atmos Sci (in Chinese). 26(5), 663-676 (2002)
  25. Ming, H., Wang, M.Z., Ruan, Z., Gao, L.H., Wei, G.: Analysis on wind profiler radar observation of stratiform cloud precipitation event in middle part of Tianshan Mountain. Meteor Mon (in Chinese). 40(12), 1518-1526 (2014)
  26. Nissen, R., List, R., Hudak, D., McFarquhar, G.M., Lawson, R.P., Tung, N.P., Soo, S.K., Kang, T.S.: Constant raindrop fall speed profiles derived from Doppler radar data analyses for steady nonconvective precipitation. J. Atmos. Sci. 62, 220-230 (2005) https://doi.org/10.1175/JAS-3369.1
  27. Orr, B.W.,Martner, B.E.: Detection of weakly precipitating winter clouds by a NOAA 404-MHz wind profiler. J. Atmos. Ocean. Technol. 13, 570-580 (1996) https://doi.org/10.1175/1520-0426(1996)013<0570:DOWPWC>2.0.CO;2
  28. Radke, L.F., Hobbs, P.V.: Measurements of cloud condensation nuclei, light scattering coefficient, sodium-containing particles and Aitken nuclei in the Olympic Mountains of Washington. J. Atmos. Sci. 26, 281-288 (1969) https://doi.org/10.1175/1520-0469(1969)026<0281:MOCCNL>2.0.CO;2
  29. Richards, F., Arkin, P.: On the relationship between satellite-observed cloud cover and precipitation. Mon. Wea. Rev. 109, 1081-1093 (1981) https://doi.org/10.1175/1520-0493(1981)109<1081:OTRBSO>2.0.CO;2
  30. Rosenfeld, D., Lensky, I.M.: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc. 79, 2457-2476 (1998) https://doi.org/10.1175/1520-0477(1998)079<2457:SBIIPF>2.0.CO;2
  31. Rutledge, S.A., Hobbs, P.V.: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: a model for the "seeder-feeder" process in warm-frontal rainbands. J. Atmos. Sci. 40, 1185-1206 (1983) https://doi.org/10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2
  32. Sheng, P.X., Mao, J.T., Li, J.G., Zhang, A.C., Sang, J.G., Pan, N.X.: Atmosphere Physics. (pp. 289-376). Peking University Press, Beijing, China (2003)
  33. Spencer, R.W., Martin, D.W., Hinton, B.B., Weinman, J.A.: Satellite microwave radiances correlated with radar rain rates over land. Nature. 304, 141-143 (1983) https://doi.org/10.1038/304141a0
  34. Tokuno, M., Tsuchiya, K.: Classification of cloud types based on data of multiple satellite sensors. Adv. Space Res. 14, 199-206 (1994)
  35. Ulbrich, C.W., Chilson, P.B.: Effects of variations in precipitation size distribution and fallspeed law parameters on relations between mean doppler fallspeed and reflectivity factor. J. Atmos. Ocean. Technol. 11, 1656-1663 (1994) https://doi.org/10.1175/1520-0426(1994)011<1656:EOVIPS>2.0.CO;2
  36. Yang, W.X., Niu, S.J., Wei, J.G., Sun, Y.W.: Airborne observation for microphysical structure of precipitation system of stratiform cloud in Hebei province. Plateau Meteor (in Chinese). 24, 84-90 (2005)
  37. Yang, J., Chen, B.J., Yin, Y.: Physics of Clouds and Precipitation (pp. 223-250). China Meteorological Press, Beijing, China (2011)
  38. Yao, Z.Y.: Review of weather modification research in Chinese academy of meteorological sciences. J Appl Meteor Sci (in Chinese). 17, 786-795 (2006)
  39. You, L.G., Ma, P.M., Hu, Z.J.: The artificial precipitation experiment on the stratiform clouds in north of China. Meteor Sci Technol (in Chinese). 30, 19-56 (2002)
  40. Zhang, P.C., Du, B.Y., Dai, T.P.: Radar Meteorology (pp.70-93). China Meteorological Press, Beijing, China (2001)
  41. Zhang, G.C., Jiao, M.Y., Li, Y.X.: Techniques and methods of contemporary Weather Forecast. (pp.78-79). China Meteorological Press, Beijing, China (2007)
  42. Zhu, Q.G., Lin, J.R., Shou, S.W.: Synoptic Meteorology Theory and Method (pp. 444-446). China Meteorological Press, Beijing, China (1984)