DOI QR코드

DOI QR Code

Performance of EMIMFSI ionic liquid based gel polymer electrolyte in rechargeable lithium metal batteries

  • Balo, Liton (Ionic Liquid and Solid State Ionics Lab, Department of Physics, Banaras Hindu University) ;
  • Gupta, Himani (Ionic Liquid and Solid State Ionics Lab, Department of Physics, Banaras Hindu University) ;
  • Singh, Shishir Kumar (Ionic Liquid and Solid State Ionics Lab, Department of Physics, Banaras Hindu University) ;
  • Singh, Varun Kumar (Ionic Liquid and Solid State Ionics Lab, Department of Physics, Banaras Hindu University) ;
  • Kataria, Shalu (Centre of Material Sciences, IIDS, University of Allahabad) ;
  • Singh, Rajendra Kumar (Ionic Liquid and Solid State Ionics Lab, Department of Physics, Banaras Hindu University)
  • Received : 2017.11.17
  • Accepted : 2018.04.16
  • Published : 2018.09.25

Abstract

Flexible gel polymer electrolytes based on polymer polyethylene oxide, salt lithium bis(fluorosulfonyl) imide and ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide are synthesized. Prepared samples show high thermal stability, high ionic conductivity at room temperature and an electrochemical stability window of ~3.51V vs. $Li/Li^+$. Lithium deposition-striping voltage profiles show the formation of a stable solid electrolyte interface. A $Li/GPE/LiFePO_4$ cell was assembled by low cost thermal lamination technique. This cell can deliver $143mAh\;g^{-1}$ capacity at room temperature at C/20 rate with good discharge efficiency. Use of micro grid mesh type Al current collector in cathode exhibits significant improvement in capacity retention.

Keywords

References

  1. M. Armand, J.-M. Tarascon, Nature 451 (2008) 652. https://doi.org/10.1038/451652a
  2. M.D. Bhatt, C. O'Dwyer, Phys. Chem. Chem. Phys.: PCCP 17 (2015) 4799. https://doi.org/10.1039/C4CP05552G
  3. I. Osada, H. deVries, B. Scrosati, S. Passerini, Angew. Chem. Int. Ed. 55 (2016) 500. https://doi.org/10.1002/anie.201504971
  4. Z. Xue, D. He, X. Xie, J. Mater. Chem. A 3 (2015) 19218. https://doi.org/10.1039/C5TA03471J
  5. W.H. Meyer, Adv. Mater. 10 (1998) 439. https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
  6. J. Song, Y. Wang, C.C. Wan, J. Power Sources 77 (1999) 183. https://doi.org/10.1016/S0378-7753(98)00193-1
  7. K. Timachova, H. Watanabe, N.P. Balsara, Macromolecules 48 (2015) 7882. https://doi.org/10.1021/acs.macromol.5b01724
  8. I. Osada, H. de Vries, B. Scrosati, S. Passerini, Angew. Chem. Int. Ed. 55 (2016) 500. https://doi.org/10.1002/anie.201504971
  9. N. Mohamed, S.H. Ali, A. Arof, Indones. J. Phys. (under maintenance) 15 (2016) 55.
  10. Y. Zhu, X. Wang, Y. Hou, X. Gao, L. Liu, Y. Wu, M. Shimizu, Electrochim. Acta 87 (2013) 113. https://doi.org/10.1016/j.electacta.2012.08.114
  11. F. Croce, G. Appetecchi, L. Persi, B. Scrosati, Nature 394 (1998) 456. https://doi.org/10.1038/28818
  12. J. Weston, B. Steele, Solid State Ionics 7 (1982) 75. https://doi.org/10.1016/0167-2738(82)90072-8
  13. S. Das, A. Ghosh, Electrochim. Acta 171 (2015) 59. https://doi.org/10.1016/j.electacta.2015.04.178
  14. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Nature Mater. 8 (2009) 621. https://doi.org/10.1038/nmat2448
  15. J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Chem. Commun. (1998) 1765.
  16. K.R. Seddon, J. Chem. Technol. Biotechnol. 68 (1997) 351. https://doi.org/10.1002/(SICI)1097-4660(199704)68:4<351::AID-JCTB613>3.0.CO;2-4
  17. M. Watanabe, T. Mizumura, Solid State Ionics 86 (1996) 353.
  18. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, J. Phys. Chem. Ref. Data 35 (2006) 1475. https://doi.org/10.1063/1.2204959
  19. D. Zhang, B. Haran, A. Durairajan, R.E. White, Y. Podrazhansky, B.N. Popov, J. Power Sources 91 (2000) 122. https://doi.org/10.1016/S0378-7753(00)00469-9
  20. P. Arora, R.E. White, M. Doyle, J. Electrochem. Soc. 145 (1998) 3647. https://doi.org/10.1149/1.1838857
  21. J. Wen, Y. Yu, C. Chen, Mater. Express 2 (2012) 197. https://doi.org/10.1166/mex.2012.1075
  22. H.-B. Han, S.-S. Zhou, D.-J. Zhang, S.-W. Feng, L.-F. Li, K. Liu, W.-F. Feng, J. Nie, H. Li, X.-J. Huang, J. Power Sources 196 (2011) 3623. https://doi.org/10.1016/j.jpowsour.2010.12.040
  23. T. Sugimoto, Y. Atsumi, M. Kono, M. Kikuta, E. Ishiko, M. Yamagata, M. Ishikawa, J. Power Sources 195 (2010) 6153. https://doi.org/10.1016/j.jpowsour.2010.01.011
  24. J.-H. Shin, W.A. Henderson, S. Scaccia, P.P. Prosini, S. Passerini, J. Power Sources 156 (2006) 560. https://doi.org/10.1016/j.jpowsour.2005.06.026
  25. L. Balo, H. Gupta, V.K. Singh, R.K. Singh, Electrochim. Acta 230 (2017) 123. https://doi.org/10.1016/j.electacta.2017.01.177
  26. S. Shalu, L. Balo, H. Gupta, V.k. Singh, R.K. Singh, RSC Adv. 6 (2016) 73028. https://doi.org/10.1039/C6RA10340E
  27. J. Evans, C.A. Vincent, P.G. Bruce, Polymer 28 (1987) 2324. https://doi.org/10.1016/0032-3861(87)90394-6
  28. J. Zhang, J. Zhao, L. Yue, Q. Wang, J. Chai, Z. Liu, X. Zhou, H. Li, Y. Guo, G. Cui, Adv. Energy Mater. 5 (2015).
  29. C. Sirisopanaporn, A. Fernicola, B. Scrosati, J. Power Sources 186 (2009) 490. https://doi.org/10.1016/j.jpowsour.2008.10.036
  30. A. Vallee, S. Besner, J. Prud'Homme, Electrochim. Acta 37 (1992) 1579. https://doi.org/10.1016/0013-4686(92)80115-3
  31. S.K. Chaurasia, R.K. Singh, S. Chandra, Solid State Ionics 183 (2011) 32. https://doi.org/10.1016/j.ssi.2010.12.008
  32. S.K. Chaurasia, R.K. Singh, S. Chandra, J. Polym. Sci. B: Polym. Phys. 49 (2011) 291. https://doi.org/10.1002/polb.22182
  33. E. Paillard, Q. Zhou, W.A. Henderson, G.B. Appetecchi, M. Montanino, S. Passerini, J. Electrochem. Soc. 156 (2009) A891. https://doi.org/10.1149/1.3208048
  34. C. Zhu, H. Cheng, Y. Yang, J. Electrochem. Soc. 155 (2008) A569. https://doi.org/10.1149/1.2931523
  35. A.R. Polu, H.-W. Rhee, Int. J. Hydrogen Energy 42 (2017) 7212. https://doi.org/10.1016/j.ijhydene.2016.04.160
  36. B. Singh, S. Sekhon, J. Phys. Chem. B 109 (2005) 16539. https://doi.org/10.1021/jp051673c
  37. E. Abitelli, S. Ferrari, E. Quartarone, P. Mustarelli, A. Magistris, M. Fagnoni, A. Albini, C. Gerbaldi, Electrochim. Acta 55 (2010) 5478. https://doi.org/10.1016/j.electacta.2010.04.099
  38. H. Gupta, S. Shalu, L. Balo, V.K. Singh, S.K. Chaurasia, R.K. Singh, RSC Adv. 6 (2016) 87878. https://doi.org/10.1039/C6RA20393K
  39. F. Croce, L. Settimi, B. Scrosati, Electrochem. Commun. 8 (2006) 364. https://doi.org/10.1016/j.elecom.2005.12.002
  40. C. Fasciani, S. Panero, J. Hassoun, B. Scrosati, J. Power Sources 294 (2015) 180. https://doi.org/10.1016/j.jpowsour.2015.06.068
  41. M. Chintapalli, K. Timachova, K.R. Olson, S.J. Mecham, D. Devaux, J.M. DeSimone, N.P. Balsara, Macromolecules 49 (2016) 3508. https://doi.org/10.1021/acs.macromol.6b00412
  42. Q. Wang, W.-L. Song, L.-Z. Fan, Q. Shi, J. Power Sources 279 (2015) 405. https://doi.org/10.1016/j.jpowsour.2015.01.035
  43. H.F. Xiang, B. Yin, H. Wang, H.W. Lin, X.W. Ge, S. Xie, C.H. Chen, Electrochim. Acta 55 (2010) 5204. https://doi.org/10.1016/j.electacta.2010.04.041
  44. P. Yang, L. Liu, L. Li, J. Hou, Y. Xu, X. Ren, M. An, N. Li, Electrochim. Acta 115 (2014) 454. https://doi.org/10.1016/j.electacta.2013.10.202
  45. B. Jin, E.M. Jin, K.-H. Park, H.-B. Gu, Electrochem. Comm. 10 (2008) 1537. https://doi.org/10.1016/j.elecom.2008.08.001
  46. S. Xiong, K. Xie, E. Blomberg, P. Jacobsson, A. Matic, J. Power Sources 252 (2014) 150. https://doi.org/10.1016/j.jpowsour.2013.11.119
  47. J.-H. Shin, W.A. Henderson, S. Scaccia, P.P. Prosini, S. Passerini, J. Power Sources 156 (2006) 560. https://doi.org/10.1016/j.jpowsour.2005.06.026
  48. M. Li, L. Yang, S. Fang, S. Dong, Y. Jin, S.-i. Hirano, K. Tachibana, J. Power Sources 196 (2011) 6502. https://doi.org/10.1016/j.jpowsour.2011.03.071
  49. Y. Ma, L.B. Li, G.X. Gao, X.Y. Yang, Y. You, Electrochim. Acta 187 (2016) 535. https://doi.org/10.1016/j.electacta.2015.11.099
  50. K.S. Ng, C.-S. Moo, Y.-P. Chen, Y.-C. Hsieh, Appl. Energy 86 (2009) 1506. https://doi.org/10.1016/j.apenergy.2008.11.021

Cited by

  1. Development of Polymer Electrolyte and Cathode Material for Li-Batteries vol.166, pp.3, 2018, https://doi.org/10.1149/2.0331903jes
  2. Development of gel polymer electrolyte based on LiTFSI and EMIMFSI for application in rechargeable lithium metal battery with GO-LFP and NCA cathodes vol.23, pp.8, 2018, https://doi.org/10.1007/s10008-019-04321-6
  3. Comparative Studies on Ionic Liquid and Polymer Ionic Liquid Blend for Application in EDLCs vol.388, pp.1, 2018, https://doi.org/10.1002/masy.201900029
  4. A Superior Flame‐Resistant and Wide‐Temperature Adaptable Yarn Lithium‐Ion Battery with a Highly Conductive Ionogel Electrolyte vol.7, pp.19, 2018, https://doi.org/10.1002/celc.202001072
  5. Geminal Dicationic Ionic Liquid-Based Freestanding Ion Membrane for High-Safety Lithium Batteries vol.13, pp.14, 2018, https://doi.org/10.1021/acsami.0c22605
  6. Flexible Nanocomposite Polymer Electrolyte Based on UV-Cured Polyurethane Acrylate for Lithium Metal Batteries vol.9, pp.16, 2018, https://doi.org/10.1021/acssuschemeng.1c00467
  7. Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for safe lithium metal battery vol.267, pp.None, 2018, https://doi.org/10.1016/j.matchemphys.2021.124701
  8. Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries vol.8, pp.17, 2018, https://doi.org/10.1002/advs.202101111
  9. Recent applications of ionic liquids in quasi-solid-state lithium metal batteries vol.2, pp.3, 2021, https://doi.org/10.1016/j.gce.2021.03.001
  10. Polar β-Phase PVdF-HFP-Based Freestanding and Flexible Gel Polymer Electrolyte for Better Cycling Stability in a Na Battery vol.35, pp.18, 2021, https://doi.org/10.1021/acs.energyfuels.1c02114
  11. Dendrite-Free Solid-State Li Metal Batteries Enabled by Bifunctional Polymer Gel Electrolytes vol.4, pp.9, 2018, https://doi.org/10.1021/acsaem.1c01634