DOI QR코드

DOI QR Code

The epoxy coating interfacial adhesion and corrosion protection properties enhancement through deposition of cerium oxide nanofilm modified by graphene oxide

  • Parhizkar, Nafise (Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University) ;
  • Ramezanzadeh, Bahram (Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST)) ;
  • Shahrabi, Taghi (Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University)
  • Received : 2018.02.20
  • Accepted : 2018.04.02
  • Published : 2018.08.25

Abstract

This paper aims at improving the cathodic disbonding, corrosion protection and adhesion properties of epoxy coating through steel substrate treatment by cerium nanofilm. For this purpose, the cerium film was modified by graphene oxide nanosheets, which are covalently functionalized with silane coupling agent. The performance of this coating was studied by electrochemical impedance spectroscopy, Pull-off adhesion and cathodic delamination tests and the morphology of the modified cerium film was investigated by field-emission scanning electron microscopy. Results revealed that modifying the cerium nanofilm led to the better adhesion strength, corrosion protection performance and lower cathodic delamination rate of epoxy coating.

Keywords

References

  1. S. Pour-Ali, C. Dehghanian, A. Kosari, Corros. Sci. 90 (2015) 239. https://doi.org/10.1016/j.corsci.2014.10.015
  2. G. Saravanan, S. Mohan, Corros. Sci. 51 (2009) 197. https://doi.org/10.1016/j.corsci.2008.10.005
  3. C. Chen, S. Dong, R. Hou, J. Hu, P. Jiang, C. Ye, R. Du, C. Lin, Surf. Coat. Technol. 326 (2017) 183. https://doi.org/10.1016/j.surfcoat.2017.06.031
  4. Z. Wang, E. Han, F. Liu, Z. Qian, L. Zhu, J. Mater. Sci. Technol. 30 (2014) 1036. https://doi.org/10.1016/j.jmst.2014.01.004
  5. L. Chen, S. Chai, K. Liu, N. Ning, J. Gao, Q. Liu, F. Chen, Q. Fu, ACS Appl. Mater. Interfaces 4 (2012) 4398. https://doi.org/10.1021/am3010576
  6. A. Ghanbari, M. Attar, Surf. Coat. Technol. 246 (2014) 26. https://doi.org/10.1016/j.surfcoat.2014.02.057
  7. M. Maksimovic, V. Miskovic-Stankovic, Corros. Sci. 33 (1992) 271. https://doi.org/10.1016/0010-938X(92)90151-R
  8. H. Bi, J. Sykes, Prog. Org. Coat. 87 (2015) 83. https://doi.org/10.1016/j.porgcoat.2015.05.015
  9. M.A. Alam, E.-S.M. Sherif, S.M. Al-Zahrani, Int. J. Electrochem. Sci. 8 (2013) 3121.
  10. E. Koehler, Corrosion 40 (1984) 5. https://doi.org/10.5006/1.3579295
  11. M. Sababi, H. Terryn, J.M.C. Mol, Prog. Org. Coat. 105 (2017) 29. https://doi.org/10.1016/j.porgcoat.2016.11.016
  12. W. Zhu, W. Li, S. Mu, Y. Yang, X. Zuo, Appl. Surf. Sci. 384 (2016) 333. https://doi.org/10.1016/j.apsusc.2016.05.083
  13. H. Zhang, G. Yao, S. Wang, Y. Liu, H. Luo, Surf. Coat. Technol. 202 (2008) 1825. https://doi.org/10.1016/j.surfcoat.2007.07.094
  14. M. Zhao, S. Wu, J. Luo, Y. Fukuda, H. Nakae, Surf. Coat. Technol. 200 (2006) 5407. https://doi.org/10.1016/j.surfcoat.2005.07.064
  15. D. Zimmermann, A. Munoz, J. Schultze, Electrochim. Acta 48 (2003) 3267. https://doi.org/10.1016/S0013-4686(03)00385-2
  16. A. Zarei, A. Afshar, Mater. Process. Prop. 28 (2009) 615.
  17. N. Asadi, R. Naderi, M. Saremi, S. Arman, M. Fedel, F. Deflorian, J. Sol Gel Sci. Technol. 70 (2014) 329. https://doi.org/10.1007/s10971-014-3286-8
  18. R. Figueira, C.J. Silva, E. Pereira, J. Coat. Technol. Res. 12 (2015) 1. https://doi.org/10.1007/s11998-014-9595-6
  19. Y.J. Du, M. Damron, G. Tang, H. Zheng, C.-J. Chu, J.H. Osborne, Prog. Org. Coat. 41 (2001) 226. https://doi.org/10.1016/S0300-9440(01)00133-3
  20. N. Rezaee, M. Attar, B. Ramezanzadeh, Surf. Coat. Technol. 236 (2013) 361. https://doi.org/10.1016/j.surfcoat.2013.10.014
  21. A. Sharma, A.K. Sharma, Metal Finish. 1989 (1989) 87.
  22. X. Zhang, C. Van den Bos, W. Sloof, A. Hovestad, H. Terryn, J. De Wit, Surf. Coat. Technol. 199 (2005) 92. https://doi.org/10.1016/j.surfcoat.2004.12.002
  23. X. Zhang, W. Sloof, A. Hovestad, E. Van Westing, H. Terryn, J. De Wit, Surf. Coat. Technol. 197 (2005) 168. https://doi.org/10.1016/j.surfcoat.2004.08.196
  24. M. Mahdavian, B. Ramezanzadeh, M. Akbarian, M. Ramezanzadeh, S. Farashi, J. Ind. Eng. Chem. 55 (2017) 244. https://doi.org/10.1016/j.jiec.2017.07.001
  25. T.A. Otitoju, A.L. Ahmad, B.S. Ooi, J. Ind. Eng. Chem. 47 (2017) 19. https://doi.org/10.1016/j.jiec.2016.12.016
  26. J. Sanchez-Amaya, G. Blanco, F. Garcia-Garcia, M. Bethencourt, F. Botana, Surf. Coat. Technol. 213 (2012) 105. https://doi.org/10.1016/j.surfcoat.2012.10.027
  27. C. Wang, F. Jiang, F. Wang, Corros. Sci. 46 (2004) 75. https://doi.org/10.1016/S0010-938X(03)00135-5
  28. M. Hosseini, H. Ashassi-Sorkhabi, H.A.Y. Ghiasvand, J. Rare Earths 25 (2007) 537. https://doi.org/10.1016/S1002-0721(07)60558-4
  29. M.R. Majdi, I. Danaee, S.S.S. Afghahi, Mater Res. 20 (2) (2017) 445-451. https://doi.org/10.1590/1980-5373-mr-2016-0661
  30. E. Onofre-Bustamante, M.A. Dominguez-Crespo, A.M. Torres-Huerta, A. Olvera-Martinez, J. Genesca-Llongueras, F.J. Rodriguez-Gomez, J. Solid State Electrochem. 13 (2009) 1785. https://doi.org/10.1007/s10008-009-0871-9
  31. Y. Kobayashi, Y. Fujiwara, Electrochim. Acta 51 (2006) 4236. https://doi.org/10.1016/j.electacta.2005.11.043
  32. B. Ramezanzadeh, H. Vakili, R. Amini, J. Ind. Eng. Chem. 30 (2015) 225. https://doi.org/10.1016/j.jiec.2015.05.026
  33. H. Vakili, B. Ramezanzadeh, R. Amini, Corros. Sci. 94 (2015) 466. https://doi.org/10.1016/j.corsci.2015.02.028
  34. Z. Mahidashti, T. Shahrabi, B. Ramezanzadeh, Appl. Surf. Sci. 390 (2016) 623. https://doi.org/10.1016/j.apsusc.2016.08.160
  35. B. Ramezanzadeh, M. Rostami, Appl. Surf. Sci. 392 (2017) 1004. https://doi.org/10.1016/j.apsusc.2016.09.140
  36. G. Bahlakeh, B. Ramezanzadeh, M. Ramezanzadeh, Corros. Sci. 118 (2017) 69. https://doi.org/10.1016/j.corsci.2017.01.021
  37. Hui Xu, Bo Yan, Ke Zhang, Jin Wang, Shumin Li, Caiqin Wang, Yukihide Shiraishi, Yukou Du, Ping Yang, Electrochim. Acta 245 (2017) 227. https://doi.org/10.1016/j.electacta.2017.05.146
  38. Hui Xu, Ke Zhang, Bo Yan, Jin Wang, Caiqin Wang, Shumin Li, Zhulan Gu, Yukou Du, Ping Yang, J. Power Sources 356 (2017) 27. https://doi.org/10.1016/j.jpowsour.2017.04.070
  39. Hui Xu, Bo Yan, Shumin Li, Jin Wang, Caiqin Wang, Jun Guo, Yukou Du, Chem. Eng. J. 334 (2018) 2638. https://doi.org/10.1016/j.cej.2017.10.175
  40. Hui Xu, Bo Yan, Shumin Li, Jin Wang, Caiqin Wang, Jun Guo, Yukou Du, ACS Sustain. Chem. Eng. 6 (1) (2018) 609. https://doi.org/10.1021/acssuschemeng.7b02935
  41. S.Z. Haeri, B. Ramezanzadeh, M. Asghari, J. Colloid Interface Sci. 493 (2017) 111. https://doi.org/10.1016/j.jcis.2017.01.016
  42. Roshanak Miraftab, Behzad Karimi, Ghasem Bahlakeh, Bahram Ramezanzadeh, J. Ind. Eng. Chem. 53 (2017) 348. https://doi.org/10.1016/j.jiec.2017.05.006
  43. Y. Hayatgheib, B. Ramezanzadeh, P. Kardar, M. Mahdavian, Corros. Sci. 133 (2018) 358. https://doi.org/10.1016/j.corsci.2018.01.046
  44. Bahar Nikpour, Bahram Ramezanzadeh, Ghasem Bahlakehb, Mohammad Mahdavian, Corros. Sci. 127 (2017) 240. https://doi.org/10.1016/j.corsci.2017.08.029
  45. N. Parhizkar, T. Shahrabi, B. Ramezanzadeh, Corros. Sci. 123 (2017) 55. https://doi.org/10.1016/j.corsci.2017.04.011
  46. C.Y. Lee, J.-H. Bae, T.-Y. Kim, S.-H. Chang, S.Y. Kim, Compos. A: Appl. Sci. Manuf. 75 (2015) 11. https://doi.org/10.1016/j.compositesa.2015.04.013
  47. R.K. Layek, A.K. Nandi, Polymer 54 (2013) 5087. https://doi.org/10.1016/j.polymer.2013.06.027
  48. S. Wang, P.J. Chia, L.L. Chua, L.H. Zhao, R.Q. Png, S. Sivaramakrishnan, M. Zhou, R.G.S. Goh, R.H. Friend, A.T.S. Wee, Adv. Mater. 20 (2008) 3440. https://doi.org/10.1002/adma.200800279
  49. S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon 44 (2006) 3342. https://doi.org/10.1016/j.carbon.2006.06.004
  50. B. Ramezanzadeh, E. Ghasemi, M. Mahdavian, E. Changizi, M.H. Mohamadzadeh Moghadam, Chem. Eng. J. 281 (2015) 869. https://doi.org/10.1016/j.cej.2015.07.027
  51. B. Ramezanzadeh, S. Niroumandrad, A. Ahmadi, M. Mahdavian, M.H.M. Moghadam, Corros. Sci. 103 (2016) 283. https://doi.org/10.1016/j.corsci.2015.11.033
  52. L.B. Tong, J.B. Zhang, C. Xu, X. Wang, S.Y. Song, Z.H. Jiang, S. Kamado, L.R. Cheng, H.J. Zhang, Carbon 109 (2016) 340. https://doi.org/10.1016/j.carbon.2016.08.032
  53. J. Chen, B. Yao, C. Li, G. Shi, Carbon 64 (2013) 225. https://doi.org/10.1016/j.carbon.2013.07.055
  54. D. Luo, G. Zhang, J. Liu, X. Sun, J. Phys. Chem. C 115 (2011) 11327. https://doi.org/10.1021/jp110001y
  55. S. Saxena, T.A. Tyson, S. Shukla, E. Negusse, H. Chen, J. Bai, Appl. Phys. Lett. 99 (2011)013104. https://doi.org/10.1063/1.3607305
  56. D. Li, A. Neumann, J. Colloid Interface Sci. 137 (1990) 304. https://doi.org/10.1016/0021-9797(90)90067-X
  57. B. Ramezanzadeh, E. Ghasemi, M. Mahdavian, E. Changizi, M.M. Moghadam, Carbon 93 (2015) 555. https://doi.org/10.1016/j.carbon.2015.05.094

Cited by

  1. Understanding the role of silane pretreatments in an organic coating system. Part 1: corrosion performance and interfacial property vol.16, pp.3, 2019, https://doi.org/10.1007/s11998-018-00164-4
  2. Effect of graphene oxide loading on plasma sprayed alumina-graphene oxide composites for improved anticorrosive and hydrophobic surface vol.7, pp.2, 2019, https://doi.org/10.1088/2051-672x/ab2707
  3. Hybrid Sol–Gel Silica Coatings Containing Graphene Nanosheets for Improving the Corrosion Protection of AA2024-T3 vol.10, pp.6, 2018, https://doi.org/10.3390/nano10061050
  4. Hyperbranched polyester modified graphene oxide on anti-corrosion performance of epoxy composite coatings for electric power system vol.49, pp.6, 2018, https://doi.org/10.1080/14658011.2020.1735180
  5. Review of the Application of Graphene-Based Coatings as Anticorrosion Layers vol.10, pp.9, 2018, https://doi.org/10.3390/coatings10090883
  6. Enhancement of barrier and anti-corrosive performance of zinc-rich epoxy coatings using nano-silica/graphene oxide hybrid vol.38, pp.6, 2018, https://doi.org/10.1515/corrrev-2020-0034
  7. Comparación de la velocidad de corrosión del acero A-36 recubierto con nanopartículas de ZnO y TiO 2 utilizando la resistencia de polarización lineal vol.57, pp.2, 2021, https://doi.org/10.3989/revmetalm.193
  8. A comprehensive review of anticorrosive graphene-composite coatings vol.157, pp.None, 2018, https://doi.org/10.1016/j.porgcoat.2021.106321
  9. Impacts of Modified Graphite Oxide on Crystallization, Thermal and Mechanical Properties of Polybutylene Terephthalate vol.13, pp.15, 2018, https://doi.org/10.3390/polym13152431
  10. Preparation of submicron-/nano-carbon from heavy fuel oil ash and its corrosion resistance performance as composite epoxy coating vol.319, pp.None, 2018, https://doi.org/10.1016/j.jclepro.2021.128735
  11. Novel polyaniline/chitosan/reduced graphene oxide ternary nanocomposites: Feasible reinforcement in epoxy coatings on mild steel for corrosion protection vol.163, pp.None, 2022, https://doi.org/10.1016/j.porgcoat.2021.106678