DOI QR코드

DOI QR Code

Enhancement of surface stability of lithium manganese oxide spinel by silyl-group functionalized fluoride-responsive ionic liquid additives

  • Seo, Hyoree (Korea Institute of Science and Technology) ;
  • Na, Subin (Korea Institute of Science and Technology) ;
  • Lee, Boeun (Korea Institute of Science and Technology) ;
  • Yim, Taeeun (Department of Chemistry, Incheon National University) ;
  • Oh, Si Hyoung (Korea Institute of Science and Technology)
  • Received : 2018.02.21
  • Accepted : 2018.03.21
  • Published : 2018.08.25

Abstract

Spinel-structured lithium manganese oxides are considered as promising cathode material, however, their widespread commercial application remains hampered by their poor surface instability. To overcome these problems, we designed and synthesized task-specific ionic liquid additives that can effectively scavenge trace amounts of fluoride in the cell. Addition of ionic liquid additives in the electrolyte significantly improves cycling retention. $^1H-$ and $^{19}F-nuclear$ magnetic resonance spectroscopy measurements and inductively coupled plasma mass spectrometry elemental analysis collaboratively provides clear evidence that the ionic liquid additives selectively suppress parasitic reactions of the electrolyte with the surface of lithium manganese oxides cathode.

Keywords

Acknowledgement

Supported by : Korea Institute of Science Technology (KIST), Incheon National University

References

  1. D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, H. Peng, R.A. Huggins, Y. Cui, Nano Lett. 8 (2008) 3928. https://doi.org/10.1021/nl802384n
  2. M. Hirayama, H. Ido, K. Kim, W. Cho, K. Tamura, J. Mizuki, R. Kanno, J. Am. Chem. Soc. 132 (2010) 15268. https://doi.org/10.1021/ja105389t
  3. T.F. Yi, Y.R. Zhu, X.D. Zhu, J. Shu, C.B. Yue, A.N. Zhou, Ionics 15 (2009) 779. https://doi.org/10.1007/s11581-009-0373-x
  4. X. Xiao, J. Lu, Y.D. Li, Nano Res. 3 (2010) 733. https://doi.org/10.1007/s12274-010-0037-1
  5. Z. Zhang, S.S. Zhang, Rechargeable Batteries: Materials, Technologies and New Trends, Springer, Switzerland, 2015.
  6. H.R. Lee, H.R. Seo, B. Lee, B.W. Cho, K.-Y. Lee, S.H. Oh, Appl. Surf. Sci. 392 (2017) 448. https://doi.org/10.1016/j.apsusc.2016.09.059
  7. G. Amatucci, A.D. Pasquier, A. Blyr, T. Zheng, J.M. Tarascon, Electrochim. Acta 45 (1999) 255. https://doi.org/10.1016/S0013-4686(99)00209-1
  8. H.W. Lee, P. Muralidharan, R. Ruffo, C.M. Mari, Y. Cui, D.K. Kim, Nano Lett. 10 (2010) 3852. https://doi.org/10.1021/nl101047f
  9. M.J. Lee, S. Lee, P. Oh, Y. Kim, J. Cho, Nano Lett. 14 (2014) 993. https://doi.org/10.1021/nl404430e
  10. S. Lee, M. Jeong, J. Cho, Adv. Energy Mater. 3 (2013) 1623. https://doi.org/10.1002/aenm.201300510
  11. G.J. Xu, Z.H. Liu, C.J. Zhang, G.L. Cui, L.Q. Chen, J. Mater. Chem. A 3 (2015) 4092. https://doi.org/10.1039/C4TA06264G
  12. D.R. Vissers, Z.H. Chen, Y.Y. Shao, M. Enselhard, U. Das, P. Redfern, L.A. Curtiss, B. F. Pang, J. Liu, K. Amine, ACS Appl. Mater. Interfaces 8 (2016) 14244. https://doi.org/10.1021/acsami.6b02061
  13. W.D. Li, B.H. Song, A. Manthiram, Chem. Soc. Rev. 46 (2017) 3006. https://doi.org/10.1039/C6CS00875E
  14. Y.-K. Han, J. Yoo, T. Yim, RSC Adv. 7 (2017) 20049. https://doi.org/10.1039/C6RA28268G
  15. D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y.S. Cohen, H.J. Kim, M. Schmid, Electrochim. Acta 47 (2002) 4291. https://doi.org/10.1016/S0013-4686(02)00417-6
  16. B.-J. Chae, T. Yim, J. Power Sources 360 (2017) 480. https://doi.org/10.1016/j.jpowsour.2017.06.037
  17. S.F. Lux, I.T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, Electrochem. Commun. 14 (2012) 47. https://doi.org/10.1016/j.elecom.2011.10.026
  18. T. Yim, S.H. Jang, Y.-K. Han, J. Power Sources 372 (2017) 24. https://doi.org/10.1016/j.jpowsour.2017.10.044
  19. K. Tasaki, K. Kanda, S. Nakamura, M. Ue, J. Electrochem. Soc. 150 (2003) A1628. https://doi.org/10.1149/1.1622406
  20. S.H. Jang, T. Yim, ChemPhysChem 18 (2017) 3402. https://doi.org/10.1002/cphc.201700921
  21. B.G. Nicolau, A. Petronico, K. Letchworth-Weaver, Y. Ghadar, R.T. Haasch, J.A.N. T. Soares, R.T. Rooney, M.K.Y. Chan, A.A. Gewirth, R.G. Nuzzo, Adv. Mater. Interfaces 5 (2018) 1701292. https://doi.org/10.1002/admi.201701292
  22. C. Zhan, J. Lu, A.J. Kropf, T.P. Wu, A.N. Jansen, Y.K. Sun, X.P. Qiu, K. Amine, Nat. Commun. 4 (2013) 2437. https://doi.org/10.1038/ncomms3437
  23. H.H. Zheng, Q.N. Sun, G. Liu, X.Y. Song, V.S. Battaglia, J. Power Sources 207 (2012) 134. https://doi.org/10.1016/j.jpowsour.2012.01.122
  24. I.A. Shkrob, A.J. Kropf, T.W. Marin, Y. Li, O.G. Poluektov, J. Niklas, D.P. Abraham, J. Phys. Chem. C 118 (2014) 24335. https://doi.org/10.1021/jp507833u
  25. A.M. Haregewoin, A.S. Wotango, B.J. Hwang, Energy Environ. Sci. 9 (2016) 1955. https://doi.org/10.1039/C6EE00123H
  26. D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Electrochim. Acta 50 (2004) 247. https://doi.org/10.1016/j.electacta.2004.01.090
  27. L. Hu, A. Tornheim, S.S. Zhang, Z. Zhang, Rechargeable Batteries (2015) 263.
  28. W. Li, B.L. Lucht, Electrochem. Solid State Lett. 10 (2007) A115. https://doi.org/10.1149/1.2458913
  29. S. Dalavi, M.Q. Xu, B. Kinght, B.L. Lucht, Electrochem. Solid State Lett. 15 (2012) A28. https://doi.org/10.1149/2.029206esl
  30. C.C. Chang, L.J. Her, L.C. Chen, Y.Y. Lee, S.J. Liu, H.J. Tien, J. Power Sources 163 (2007) 1059. https://doi.org/10.1016/j.jpowsour.2006.09.051
  31. A.S. Pilcher, H.L. Ammon, P. DeShong, J. Am. Chem. Soc. 117 (1995) 5166. https://doi.org/10.1021/ja00123a025
  32. R.K. Sharma, J.L. Fry, J. Org. Chem. 48 (1983) 2112. https://doi.org/10.1021/jo00160a041
  33. G.C. Yan, X.H. Li, Z.X. Wang, H.J. Guo, W.J. Peng, Q. Hu, J. Solid State Electrochem. 20 (2016) 507. https://doi.org/10.1007/s10008-015-3069-3
  34. A. Abouimrane, J. Ding, I.J. Davidson, J. Power Sources 189 (2009) 693. https://doi.org/10.1016/j.jpowsour.2008.08.077
  35. T. Yim, H.Y. Lee, H.J. Kim, J. Mun, S. Kim, S.M. Oh, Y.G. Kim, Bull. Korean Chem. Soc. 28 (2007) 1567. https://doi.org/10.5012/bkcs.2007.28.9.1567
  36. T. Yim, C.Y. Choi, J. Mum, S.M. Oh, Y.G. Kim, Molecules 14 (2009) 1840. https://doi.org/10.3390/molecules14051840
  37. M. Wang, J. Wang, H.C. Wang, H.L. Huang, H.L. Liu, J. Nanomater. 2010 (2010) 5.
  38. S.V. Dzyuba, K.D. Kollar, S.S. Sabnis, J. Chem. Educ. 86 (2009) 856. https://doi.org/10.1021/ed086p856
  39. J. Hu, D.L. Wan, W.G. Zhu, L.H. Huang, S.Z. Tan, X. Cai, X.J. Zhang, ACS Appl. Mater. Interfaces 6 (2014) 4720. https://doi.org/10.1021/am405313u
  40. D. Bellus, E.N. Jacobsen, S.V. Ley, R. Noyori, M. Regitz, P.J. Reider, E. Schaumann, I. Shinkai, E.J. Thomas, B.M. Trost, Science of Synthesis, Georg Thieme Verlag, New York, 2002.
  41. G.G. Eshetu, S. Grugeon, G. Gachot, D. Mathiron, M. Armand, S. Laruelle, Electrochim. Acta 102 (2013) 133. https://doi.org/10.1016/j.electacta.2013.03.171
  42. K.U. Schwenke, J. Herranz, H.A. Gasteiger, M. Piana, J. Electrochem. Soc. 162 (2015) A905. https://doi.org/10.1149/2.0241506jes
  43. C. Neves, K.A. Kurnia, K. Shimizu, I.M. Marrucho, L.P.N. Rebelo, J.A.P. Coutinho, M.G. Freire, J.N. Lopes, Phys. Chem. Chem. Phys. 16 (2014) 21340. https://doi.org/10.1039/C4CP02008A
  44. M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M. Kono, J. Power Sources 162 (2006) 658. https://doi.org/10.1016/j.jpowsour.2006.02.077
  45. F. Enderes, A.P. Abbott, D.R. MacFarlane, Electrodeposition from Ionic Liquids, Wiley-VCH, Weinheim, 2008.
  46. H. Ohno, Electrochemical Aspects of Ionic Liquids, Wiley & Sons, Inc., New Jersey, 2005.
  47. M. Balandeh, C. Waldmann, D. Shirazi, A. Gomez, A. Rios, N. Allison, A. Khan, S. Sadeghi, J. Electrochem. Soc. 164 (2017) G99. https://doi.org/10.1149/2.0941709jes
  48. M.G. Campbell, T. Ritter, Chem. Rev. 115 (2015) 612. https://doi.org/10.1021/cr500366b
  49. H. Sun, S.G. Dimagno, J. Am. Chem. Soc. 127 (2005) 2050. https://doi.org/10.1021/ja0440497
  50. S.A. Hardinger, Structure of Organic Molecules: Course thinkbook: Concept Focus Questions, OWLS Problems, Practice Problems, Hayden-McNeil, 2012.
  51. S.A. Hardinger, Organic Molecular Structures and Interactions, Hayden-McNeil, 2017.
  52. K. Mikami, Y. Itoh, M. Yamanaka, Chem. Rev. 104 (2004) 1. https://doi.org/10.1021/cr030685w
  53. C.E. Allison, T.B. McMahon, J. Am. Chem. Soc. 112 (1990) 1672. https://doi.org/10.1021/ja00161a002
  54. K. Karuppasamy, H.W. Rhee, P.A. Reddy, D. Gupta, L. Mitu, A.R. Polu, X.S. Shajan, J. Ind. Eng. Chem. 40 (2016) 1. https://doi.org/10.1016/j.jiec.2016.06.002
  55. P. Arora, R.E. White, M. Doyle, J. Electrochem. Soc. 145 (1998) 3647. https://doi.org/10.1149/1.1838857
  56. H.R. Seo, T. Yim, S.H. Oh, J. Ind. Eng. Chem. 53 (2017) 425. https://doi.org/10.1016/j.jiec.2017.05.015