DOI QR코드

DOI QR Code

Preparation of Well-Dispersed Nanosilver in MIL-101(Cr) Using Double-Solvent Radiation Method for Catalysis

  • Chang, Shuquan (Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Liu, Chengcheng (Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Fu, Heliang (Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Li, Zheng (Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Wu, Xian (Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Feng, Jundong (Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials College of Material Science and Technology Nanjing University of Aeronautics and Astronautics) ;
  • Zhang, Haiqian (Jiangsu Engineering Laboratory of Nuclear Energy Equipment Materials College of Material Science and Technology Nanjing University of Aeronautics and Astronautics)
  • Received : 2018.08.05
  • Accepted : 2018.11.08
  • Published : 2018.12.31

Abstract

In this study, a double-solvent radiation method is proposed to prepare silver nanoparticles in the pores of metal-organic framework MIL-101(Cr). The results reveal that well-dispersed silver nanoparticles with a diameter of about 2 nm were successfully fabricated in the cages of monodisperse octahedral MIL-101(Cr) with a particle size of about 400 nm. The structure of MIL-101(Cr) was not destroyed during the chemical treatment and irradiation. The resulting Ag/MIL-101 exhibits excellent catalytic performance for the reduction of 4-nitrophenol. This method can be extended to prepare other single or bimetallic components inside porous materials.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Jiangsu Province, Jiangsu Higher Education Institutions

References

  1. G. Ferey, C. Mellot-Draznieks, C. Serre et al., Science 309, 2040 (2005). https://doi.org/10.1126/science.1116275
  2. S. Yuan, L. Feng, K. Wang et al., Adv. Mater. 30, 1704303 (2018). https://doi.org/10.1002/adma.201704303
  3. K. Adil, Y. Belmabkhout, R. S. Pillai et al., Chem. Soc. Rev. 46, 3402 (2017). https://doi.org/10.1039/C7CS00153C
  4. M. X. Wu and Y. W. Yang, Adv Mater. 29, 1606134 (2017). https://doi.org/10.1002/adma.201606134
  5. K. J. Kim, P. Lu, J. T. Culp et al., ACS Sensors 3, 386 (2018). https://doi.org/10.1021/acssensors.7b00808
  6. Y. Z. Chen, R. Zhang, L. Jiao et al., Coord. Chem. Rev. 362, 1 (2018). https://doi.org/10.1016/j.ccr.2018.02.008
  7. C. A. Trickett, A. Helal, B. A. Al-Maythalony et al., Nat. Rev. Mater. 2, 17045 (2017). https://doi.org/10.1038/natrevmats.2017.45
  8. G. G. Chang, M. H. Huang, Y. Su et al., Chem. Commun. 51, 2859 (2015). https://doi.org/10.1039/C4CC09679G
  9. J. W. Liu, L. F. Chen, H. Cui et al., Chem. Soc. Rev. 43, 6011 (2014). https://doi.org/10.1039/C4CS00094C
  10. A. Dhakshinamoorthy and H. Garcia, Chem. Soc. Re. 41, 5262 (2012). https://doi.org/10.1039/c2cs35047e
  11. M. Yadav, A. Aijaz and Q. Xu, Funct. Mater. Lett. 5, 49 (2012).
  12. Q. H. Yang, Q. Xu, S. H. Yu et al., Angew. Chem. Int. Edit. 55, 3685 (2016). https://doi.org/10.1002/anie.201510655
  13. Y. Z. Chen, Z. U. Wang, H. W. Wang et al., J. Am. Chem. Soc. 139, 2035 (2017). https://doi.org/10.1021/jacs.6b12074
  14. Y. Z. Chen, Y. X. Zhou, H. W. Wang et al., ACS Catal. 5, 2062 (2015). https://doi.org/10.1021/cs501953d
  15. G. Lu, S. Z. Li, Z. Guo et al., Nature Chem. 4, 310 (2012). https://doi.org/10.1038/nchem.1272
  16. J. Z. Chen, R. L. Liu, Y. Y. Guo et al., ACS Catal. 5, 722 (2015). https://doi.org/10.1021/cs5012926
  17. S. Hermes, M. K. Schroter, R. Schmid et al., Angew. Chem. Int. Edit. 44, 6237 (2005). https://doi.org/10.1002/anie.200462515
  18. F. Wu, L. G. Qiu, F. Ke et al., Inorg. Chem. Commun. 32, 5 (2013). https://doi.org/10.1016/j.inoche.2013.03.003
  19. P. C. Huang, W. J. Ma, P. Yu et al., Chem.-Asian J. 11, 2705 (2016). https://doi.org/10.1002/asia.201600469
  20. D. J. Levine, T. Runcevski, M. T. Kapelewski et al., J. Am. Chem. Soc. 138, 10143 (2016). https://doi.org/10.1021/jacs.6b03523
  21. G. G. Chang, Z. B. Bao, Q. L. Ren et al., RSC Adv. 4, 20230 (2014). https://doi.org/10.1039/C4RA02125H
  22. A. Aijaz, A. Karkamkar, Y. J. Choi et al., J. Am. Chem. Soc. 134, 13926 (2012). https://doi.org/10.1021/ja3043905
  23. I. E. Ertas, M. Gulcan, A. Bulut et al., Micropor. Mesopor. Mat. 226, 94 (2016). https://doi.org/10.1016/j.micromeso.2015.12.048
  24. S. Q. Chang, B. Kang, Y. D. Dai et al., J. Appl. Polym. Sci. 112, 2511 (2009). https://doi.org/10.1002/app.29716
  25. Z. G. Sun, G. Li, L. P. Liu et al., Catal. Commun. 27, 200 (2012). https://doi.org/10.1016/j.catcom.2012.07.017
  26. Y. F. Huang, M. Liu, Y. Q. Wang et al., RSC Adv. 6, 15362 (2016). https://doi.org/10.1039/C5RA23132A
  27. Z. W. Jiang, P. F. Gao, L. Yang et al., Anal. Chem. 87, 12177 (2015). https://doi.org/10.1021/acs.analchem.5b03058
  28. D. A. Islam, A. Chakraborty and H. Acharya, New J. Chem. 40, 6745 (2016). https://doi.org/10.1039/C6NJ00296J