DOI QR코드

DOI QR Code

The Effect of Plasma Gas Composition on the Nanostructures and Optical Properties of TiO2 Films Prepared by Helicon-PECVD

  • Li, D. (College of Mechanical Engineering Yangzhou University) ;
  • Dai, S. (College of Mechanical Engineering Yangzhou University) ;
  • Goullet, A. (Institut des Materiaux Jean Rouxel (IMN)) ;
  • Granier, A. (Institut des Materiaux Jean Rouxel (IMN))
  • 투고 : 2018.07.17
  • 심사 : 2018.09.21
  • 발행 : 2018.10.31

초록

$TiO_2$ films were deposited from oxygen/titanium tetraisopropoxide (TTIP) plasmas at low temperature by Helicon-PECVD at floating potential ($V_f$) or substrate self-bias of -50 V. The influence of titanium precursor partial pressure on the morphology, nanostructure and optical properties was investigated. Low titanium partial pressure ([TTIP] < 0.013 Pa) was applied by controlling the TTIP flow rate which is introduced by its own vapor pressure, whereas higher titanium partial pressure was formed through increasing the flow rate by using a carrier gas (CG). Then the precursor partial pressures [TTIP+CG] = 0:027 Pa and 0.093 Pa were obtained. At $V_f$, all the films exhibit a columnar structure, but the degree of inhomogeneity is decreased with the precursor partial pressure. Phase transformation from anatase ([TTIP] < 0.013 Pa) to amorphous ([TTIP+CG] = 0:093 Pa) has been evidenced since the $O^+_2$ ion to neutral flux ratio in the plasma was decreased and more carbon contained in the film. However, in the case of -50 V, the related growth rate for different precursor partial pressures is slightly (~15%) decreased. The columnar morphology at [TTIP] < 0.013 Pa has been changed into a granular structure, but still homogeneous columns are observed for [TTIP+CG] = 0:027 Pa and 0.093 Pa. Rutile phase has been generated at [TTIP] < 0:013 Pa. Ellipsometry measurements were performed on the films deposited at -50 V; results show that the precursor addition from low to high levels leads to a decrease in refractive index.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China

참고문헌

  1. U. Diebold, Surf. Sci. Rep. 48, 53 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
  2. J. T. Choy, J. D. B. Bradley, P. B. Deotare, I. B. Burgess, C. C. Evans, E. Mazur and M. Loncar, Opt. Lett. 37, 539 (2012). https://doi.org/10.1364/OL.37.000539
  3. A. S. Zuruzi and N. C. MacDonald, Adv. Funct. Mater. 15, 396 (2005). https://doi.org/10.1002/adfm.200400135
  4. M. Zukalova, A. Zukal, L. Kavan, M. K. Nazeeruddin, P. Liska and M. Gratzel, Nano Lett. 5, 1789 (2005). https://doi.org/10.1021/nl051401l
  5. S. Maikap, T. Y. Wang, P. J. Tzeng, C. H. Lin, T. C. Tien, L. S. Lee, J. R. Yang and M. J. Tsai, Appl. Phys. Lett. 90, 262901 (2007). https://doi.org/10.1063/1.2751579
  6. C. Natarajan and G. Nogami, J. Eletcrochem. Soc. 143, 1547 (1996). https://doi.org/10.1149/1.1836677
  7. H. Ichinose, M. Terasaki and H. Katsuki, J. Sol. Gel Sci. Technol. 22, 33 (2001). https://doi.org/10.1023/A:1011256118320
  8. T. M. Fuchs, R. C. Hoffmann, T. P. Niesen, H. Tew, J. Bill and F. Aldinger, J. Mater. Chem. 12, 1597 (2002). https://doi.org/10.1039/b109460b
  9. Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa and K. Koumoto, J. Mater. Chem. 13, 608 (2003). https://doi.org/10.1039/b208681f
  10. R. Mechiakh, F. Meriche, R. Kremer, R. Bensaha, B. Boudine and A. Boudrioua, Opt. Mater. 30, 645 (2007). https://doi.org/10.1016/j.optmat.2007.02.047
  11. A. E. J. Gonzalez and S. G. Santiago, Semicond. Sci. Technol. 22, 709 (2007). https://doi.org/10.1088/0268-1242/22/7/006
  12. O. Wiranwetchayan, S. Promnopas, T. Thongtem, A. Chaipanich and S. Thongtem, Surf. Coat. Technol. 326, 310 (2017). https://doi.org/10.1016/j.surfcoat.2017.07.068
  13. M. Horprathum, P. Eiamchai, P. Chindaudom, N. Nuntawong, V. Patthanasettakul, P. Limnonthakul and P. Limsuwan, Thin Solid Films 520, 272 (2011). https://doi.org/10.1016/j.tsf.2011.07.064
  14. L. J. Meng, V. Teixeira, H. N. Cui, F. Placido, Z. Xu and M. P. dos Santos, Appl. Surf. Sci. 252, 7970 (2006). https://doi.org/10.1016/j.apsusc.2005.10.012
  15. N. Martin, D. Baretti, C. Rousselot and J.-Y. Rauch, Surf. Coat. Technol. 107, 172 (1998). https://doi.org/10.1016/S0257-8972(98)00647-1
  16. H. Yao, M. Chiu, W. Wu and F. Shieu, J. Electrochem. Soc. 153, F237 (2006). https://doi.org/10.1149/1.2221866
  17. C. Quinonez, W. Vallejo and G. Gordillo, Appl. Surf. Sci. 256, 4065 (2010). https://doi.org/10.1016/j.apsusc.2010.02.020
  18. S. Mathur and P. Kuhn, Surf. Coat. Technol. 201, 807 (2006). https://doi.org/10.1016/j.surfcoat.2005.12.039
  19. J. H. Chang, A. V. Ellis, Y. H. Hsieh, C. H. Tung and S. Y. Shen, Sci. Total Environ. 407, 5914 (2009). https://doi.org/10.1016/j.scitotenv.2009.07.041
  20. H. Lee, M. Y. Song, J. Jurng and Y. K. Park, Powder Technol. 214, 64 (2011). https://doi.org/10.1016/j.powtec.2011.07.036
  21. H. J. Kim, J. Kim and B. Hong, Appl. Surf. Sci. 274, 171 (2013). https://doi.org/10.1016/j.apsusc.2013.03.006
  22. H. Szymanowski, A. Sobczyk-Guzenda, A. Rylski, W. Jakubowski, M. Gazicki-Lipman, U. Herberth and F. Olcaytug, Thin Solid Films 515, 5275 (2007). https://doi.org/10.1016/j.tsf.2006.12.183
  23. S. K. Kim, G.-J. Choi, S. Y. Lee, M. Seo, S. W. Lee, J. H. Han, H.-S. Ahn, S. Han and C. S. Hwang, Adv. Mater. 20, 1429 (2008). https://doi.org/10.1002/adma.200701085
  24. H. B. Profijt, M. C. M. van de Sanden and W. M. M. Kessels, J. Vac. Sci. Technol. A 31, 01A106 (2013).
  25. J. Pointet, P. Gonon, L. L. Romain, A. Bsiesy and C. Vallee, J. Vac. Sci. Technol. A 32, 01A120 (2014). https://doi.org/10.1116/1.4843515
  26. L. Martinu and D. Poitras, J. Vac. Sci. Technol. A 18, 2619 (2000). https://doi.org/10.1116/1.1314395
  27. A. Borras, J. Cotrino and A. R. Gonzalez-Elipe, J. Electrochem. Soc. 154, P152 (2007). https://doi.org/10.1149/1.2794289
  28. M. Nakamura, D. Korzec, T. Aoki, J. Engemann and Y. Hatanaka, Appl. Surf. Sci. 175-176, 697 (2001). https://doi.org/10.1016/S0169-4332(01)00140-4
  29. A. Sobczyk-Guzenda, M. Gazicki-Lipman, H. Szymanowski, J. Kowalski, P. Wojciechowski, T. Halamus and A. Tracz, Thin Solid Films 517, 5409 (2009). https://doi.org/10.1016/j.tsf.2009.01.010
  30. T. Busani and R. A. B. Devine, Semicond. Sci. Technol. 20, 870 (2005). https://doi.org/10.1088/0268-1242/20/8/043
  31. A. Granier, T. Begou, K. Makaoui, A. Soussou, B. Beche, E. Gaviot, M. P. Besland and A. Goullet, Plasma Process. Polym. 6, S741 (2009). https://doi.org/10.1002/ppap.200931804
  32. D. Li, M. Carette, A. Granier, J. P. Landesman and A. Goullet, Appl. Surf. Sci. 283, 234 (2013). https://doi.org/10.1016/j.apsusc.2013.06.091
  33. K. M. K. Srivatsa, D. Chhikara and M. S. Kumar, J. Mater. Sci. Technol. 27, 696 (2011).
  34. A. Borras, A. Yanguas, A. Barranco, J. Cotrino and A. R. Gonzalez-Elipe, Phys. Rev. B: Condens. Matter 76, 235303 (2007). https://doi.org/10.1103/PhysRevB.76.235303
  35. C. Charles, G. Giroult-Matlakowski, R. Boswell, A. Goullet, G. Turban and C. Cardinaud, J. Vac. Sci. Technol. A 11, 2954 (1993). https://doi.org/10.1116/1.578675
  36. D. Goghero, A. Goullet, G. Borvon and G. Turban, Thin Solid Films 471, 123 (2005). https://doi.org/10.1016/j.tsf.2004.04.065
  37. K. Safeen, V. Micheli, R. Bartali, G. Gottardi and N. Laidani, J. Phys. D: Appl. Phys. 48, 295201 (2015). https://doi.org/10.1088/0022-3727/48/29/295201
  38. K. Safeen, V. Micheli, R. Bartali, G. Gottardi, A. Safeen, H. Ullah and N. Laidani, Thin Solid Films 645, 173 (2018). https://doi.org/10.1016/j.tsf.2017.10.028
  39. K. Safeen, V. Micheli, R. Bartali, G. Gottardi, A. Safeen, H. Ullah and N. Laidani, Mater. Sci. Semicond. Process. 66, 74 (2017). https://doi.org/10.1016/j.mssp.2017.04.012
  40. J. R. Sanchez-Valencia, R. Widmer, V. J. Rico, A. Justo and A. R. Gonzalez-elipe, Cryst. Growth Des. 9, 2868 (2009). https://doi.org/10.1021/cg9001779
  41. F. Gracia, J. P. Holgado and A. R. Gonzalez-Elipe, Langmuir 20, 1688 (2004). https://doi.org/10.1021/la034998y
  42. S. Sriraman, S. Agarwal, E. S. Aydil and D. Maroudas, Nature 418, 62 (2002). https://doi.org/10.1038/nature00866
  43. Y. Leprince-Wang, D. Souche, K. Yu-Zhang, S. Fisson, G. Vuye and J. Rivory, Thin Solid Films 359, 171 (2000). https://doi.org/10.1016/S0040-6090(99)00759-2
  44. A. A. Galuska, J. C. Uht, P. M. Adams and J. M. Coggi, J. Vac. Sci. Technol. A 6, 2403 (1988). https://doi.org/10.1116/1.575563
  45. A. Y. Stakheev, E. S. Shpiro and J. Apijok, J. Phys. Chem. 97, 5668 (1993). https://doi.org/10.1021/j100123a034
  46. V. V. Atuchin, T. A. Gavrilova, J. C. Grivel and V. G. Kesler, J. Phys. D: Appl. Phys. 42, 035305 (2009). https://doi.org/10.1088/0022-3727/42/3/035305
  47. V. V. Atuchin, V. G. Kesler, N. V. Pervukhina and Z. Zhang, J. Electr. Spectr. Rel. Phenom. 152, 18 (2006). https://doi.org/10.1016/j.elspec.2006.02.004
  48. K. H. Leong, P. Monash, S. Ibrahim and P. Saravanan, Sol. Energy 101, 321 (2014). https://doi.org/10.1016/j.solener.2014.01.006
  49. P. Chowdhury, H. C. Barshilia, N. Selvakumar, B. Deepthi, K. S. Rajam, A. R. Chaudhuri and S. B. Krupanidhi, Phys. B 403, 3718 (2008). https://doi.org/10.1016/j.physb.2008.06.022
  50. G. D. Wilk, R. M. Wallace and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001). https://doi.org/10.1063/1.1361065
  51. A. Welte, C. Waldauf, C. Brabec and P. Wellmann, Thin Solid Films 516, 7256 (2008). https://doi.org/10.1016/j.tsf.2007.12.025
  52. D. Monllor-Satoca, R. Gomez, M. Gonzalez-Hidalgo and P. Salvador, Catal. Today 129, 247 (2007). https://doi.org/10.1016/j.cattod.2007.08.002
  53. K. M. Reddy, S. V. Manorama and A. R. Reddy, Mater. Chem. Phys. 78, 239 (2002).
  54. C. Yang, H. Fan, Y. Xi, J. Chen and Z. Li, Appl. Surf. Sci. 254, 2685 (2008). https://doi.org/10.1016/j.apsusc.2007.10.006
  55. M. Horprathum, P. Eiamchai, P. Chindaudom, A. Pokaipisit and P. Limsuwan, Proc. Eng. 32, 676 (2012). https://doi.org/10.1016/j.proeng.2012.01.1326
  56. R. Alvarez, P. Romero-Gomez, J. Gil-Rostra, J. Cotrino, F. Yubero, A. R. Gonzalez-Elipe and A. Palmero, Phys. Status Solidi A 210, 796 (2013). https://doi.org/10.1002/pssa.201228656
  57. A. Sonnenfeld and P. Rudolf von Rohr, Plasma Process. Polym. 6, S722 (2009). https://doi.org/10.1002/ppap.200931803
  58. L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain and S. Tanemura, Appl. Surf. Sci. 212-213, 255 (2003). https://doi.org/10.1016/S0169-4332(03)00106-5