DOI QR코드

DOI QR Code

Clinical genetics of defects in thyroid hormone synthesis

  • Kwak, Min Jung (Department of Pediatrics, Pusan National University Hospital, Pusan National University School of Medicine)
  • Received : 2018.07.23
  • Accepted : 2018.09.10
  • Published : 2018.12.30

Abstract

Thyroid dyshormonogenesis is characterized by impairment in one of the several stages of thyroid hormone synthesis and accounts for 10%-15% of congenital hypothyroidism (CH). Seven genes are known to be associated with thyroid dyshormonogenesis: SLC5A5 (NIS), SCL26A4 (PDS), TG, TPO, DUOX2, DUOXA2, and IYD (DHEAL1). Depending on the underlying mechanism, CH can be permanent or transient. Inheritance is usually autosomal recessive, but there are also cases of autosomal dominant inheritance. In this review, we describe the molecular basis, clinical presentation, and genetic diagnosis of CH due to thyroid dyshormonogenesis, with an emphasis on the benefits of targeted exome sequencing as an updated diagnostic approach.

Keywords

References

  1. Grasberger H, Refetoff S. Genetic causes of congenital hypothyroidism due to dyshormonogenesis. Curr Opin Pediatr 2011;23:421-8. https://doi.org/10.1097/MOP.0b013e32834726a4
  2. Fisher DA, Dussault JH, Foley TP Jr, Klein AH, LaFranchi S, Larsen PR, et al. Screening for congenital hypothyroidism: results of screening one million North American infants. J Pediatr 1979;94:700-5. https://doi.org/10.1016/S0022-3476(79)80133-X
  3. LaFranchi SH. Increasing incidence of congenital hypothyroidism: some answers, more questions. J Clin Endocrinol Metab 2011;96:2395-7. https://doi.org/10.1210/jc.2011-1850
  4. Rastogi MV, LaFranchi SH. Congenital hypothyroidism. Orphanet J Rare Dis 2010;5:17. https://doi.org/10.1186/1750-1172-5-17
  5. Szinnai G. Clinical genetics of congenital hypothyroidism. Endocr Dev 2014;26:60-78.
  6. Nicholas AK, Serra EG, Cangul H, Alyaarubi S, Ullah I, Schoenmakers E, et al. Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J Clin Endocrinol Metab 2016;101:4521-31. https://doi.org/10.1210/jc.2016-1879
  7. Muzza M, Rabbiosi S, Vigone MC, Zamproni I, Cirello V, Maffini MA, et al. The clinical and molecular characterization of patients with dyshormonogenic congenital hypothyroidism reveals specific diagnostic clues for DUOX2 defects. J Clin Endocrinol Metab 2014;99:E544-53. https://doi.org/10.1210/jc.2013-3618
  8. Leger J, Olivieri A, Donaldson M, Torresani T, Krude H, van Vliet G, et al. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. J Clin Endocrinol Metab 2014;99:363-84.. https://doi.org/10.1210/jc.2013-1891
  9. Spitzweg C, Heufelder AE, Morris JC. Thyroid iodine transport. Thyroid 2000;10:321-30. https://doi.org/10.1089/thy.2000.10.321
  10. Knobel M, Medeiros-Neto G. An outline of inherited disorders of the thyroid hormone generating system. Thyroid 2003;13:771-801. https://doi.org/10.1089/105072503768499671
  11. Targovnik HM, Esperante SA, Rivolta CM. Genetics and phenomics of hypothyroidism and goiter due to thyroglobulin mutations. Mol Cell Endocrinol 2010;322:44-55. https://doi.org/10.1016/j.mce.2010.01.009
  12. Muzza M, Fugazzola L. Disorders of H(2)O(2) generation. Best Pract Res Clin Endocrinol Metab 2017;31:225-40. https://doi.org/10.1016/j.beem.2017.04.006
  13. De Deken X, Wang D, Many MC, Costagliola S, Libert F, Vassart G, et al. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 2000;275:23227-33. https://doi.org/10.1074/jbc.M000916200
  14. Grasberger H, Refetoff S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 2006;281:18269-72. https://doi.org/10.1074/jbc.C600095200
  15. Zamproni I, Grasberger H, Cortinovis F, Vigone MC, Chiumello G, Mora S, et al. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab 2008;93:605-10. https://doi.org/10.1210/jc.2007-2020
  16. Moreno JC. Identification of novel genes involved in congenital hypothyroidism using serial analysis of gene expression. Horm Res 2003;60 Suppl 3:96-102.
  17. Portulano C, Paroder-Belenitsky M, Carrasco N. The Na+/I- symporter (NIS): mechanism and medical impact. Endocr Rev 2014;35:106-49. https://doi.org/10.1210/er.2012-1036
  18. Stanbury JB, Chapman EM. Congenital hypothyroidism with goitre. Absence of an iodide-concentrating mechanism. Lancet 1960;1:1162-5.
  19. Fujiwara H, Tatsumi K, Miki K, Harada T, Miyai K, Takai S, et al. Congenital hypothyroidism caused by a mutation in the Na+/I- symporter. Nat Genet 1997;16:124-5. https://doi.org/10.1038/ng0697-124
  20. The Human Gene Mutation Database [Internet]. Cardiff (UK): Cardiff University; 2015 [cited 2018 Jul 23]. Available from: http://www.hgmd.cf.ac.uk.
  21. Hannoush ZC, Weiss RE. Defects of thyroid hormone synthesis and action. Endocrinol Metab Clin North Am 2017;46:375-88. https://doi.org/10.1016/j.ecl.2017.01.005
  22. Szinnai G, Kosugi S, Derrien C, Lucidarme N, David V, Czernichow P, et al. Extending the clinical heterogeneity of iodide transport defect (ITD): a novel mutation R124H of the sodium/iodide symporter gene and review of genotypephenotype correlations in ITD. J Clin Endocrinol Metab 2006;91:1199-204. https://doi.org/10.1210/jc.2005-1832
  23. Everett LA, Green ED. A family of mammalian anion transporters and their involvement in human genetic diseases. Hum Mol Genet 1999;8:1883-91. https://doi.org/10.1093/hmg/8.10.1883
  24. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 1997;17:411-22. https://doi.org/10.1038/ng1297-411
  25. Banghova K, Al Taji E, Cinek O, Novotna D, Pourova R, Zapletalova J, et al. Pendred syndrome among patients with congenital hypothyroidism detected by neonatal screening: identification of two novel PDS/SLC26A4 mutations. Eur J Pediatr 2008;167:777-83. https://doi.org/10.1007/s00431-007-0588-7
  26. Reardon W, Trembath RC. Pendred syndrome. J Med Genet 1996;33:1037-40. https://doi.org/10.1136/jmg.33.12.1037
  27. Ladsous M, Vlaeminck-Guillem V, Dumur V, Vincent C, Dubrulle F, Dhaenens CM, et al. Analysis of the thyroid phenotype in 42 patients with Pendred syndrome and nonsyndromic enlargement of the vestibular aqueduct. Thyroid 2014;24:639-48. https://doi.org/10.1089/thy.2013.0164
  28. Targovnik HM, Citterio CE, Rivolta CM. Iodide handling disorders (NIS, TPO, TG, IYD). Best Pract Res Clin Endocrinol Metab 2017;31:195-212. https://doi.org/10.1016/j.beem.2017.03.006
  29. Ieiri T, Cochaux P, Targovnik HM, Suzuki M, Shimoda S, Perret J, et al. A 3' splice site mutation in the thyroglobulin gene responsible for congenital goiter with hypothyroidism. J Clin Invest 1991;88:1901-5. https://doi.org/10.1172/JCI115513
  30. Medeiros-Neto G, Kim PS, Yoo SE, Vono J, Targovnik HM, Camargo R, et al. Congenital hypothyroid goiter with deficient thyroglobulin. Identification of an endoplasmic reticulum storage disease with induction of molecular chaperones. J Clin Invest 1996;98:2838-44. https://doi.org/10.1172/JCI119112
  31. Abramowicz MJ, Targovnik HM, Varela V, Cochaux P, Krawiec L, Pisarev MA, et al. Identification of a mutation in the coding sequence of the human thyroid peroxidase gene causing congenital goiter. J Clin Invest 1992;90:1200-4. https://doi.org/10.1172/JCI115981
  32. Ris-Stalpers C, Bikker H. Genetics and phenomics of hypothyroidism and goiter due to TPO mutations. Mol Cell Endocrinol 2010;322:38-43. https://doi.org/10.1016/j.mce.2010.02.008
  33. Fugazzola L, Cerutti N, Mannavola D, Vannucchi G, Fallini C, Persani L, et al. Monoallelic expression of mutant thyroid peroxidase allele causing total iodide organification defect. J Clin Endocrinol Metab 2003;88:3264-71. https://doi.org/10.1210/jc.2002-021377
  34. Kotani T, Umeki K, Yamamoto I, Ohtaki S, Adachi M, Tachibana K. Iodide organification defects resulting from cosegregation of mutated and null thyroid peroxidase alleles. Mol Cell Endocrinol 2001;182:61-8. https://doi.org/10.1016/S0303-7207(01)00547-0
  35. Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A, Leto TL. Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J 2009;23:1205-18. https://doi.org/10.1096/fj.08-120006
  36. Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vijlder JJ, et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 2002;347:95-102. https://doi.org/10.1056/NEJMoa012752
  37. Maruo Y, Takahashi H, Soeda I, Nishikura N, Matsui K, Ota Y, et al. Transient congenital hypothyroidism caused by biallelic mutations of the dual oxidase 2 gene in Japanese patients detected by a neonatal screening program. J Clin Endocrinol Metab 2008;93:4261-7. https://doi.org/10.1210/jc.2008-0856
  38. Enacan RE, Masnata ME, Belforte F, Papendieck P, Olcese MC, Siffo S, et al. Transient congenital hypothyroidism due to biallelic defects of DUOX2 gene. Two clinical cases. Arch Argent Pediatr 2017;115:e162-5.
  39. Wang F, Lu K, Yang Z, Zhang S, Lu W, Zhang L, et al. Genotypes and phenotypes of congenital goitre and hypothyroidism caused by mutations in dual oxidase 2 genes. Clin Endocrinol (Oxf) 2014;81:452-7. https://doi.org/10.1111/cen.12469
  40. Jin HY, Heo SH, Kim YM, Kim GH, Choi JH, Lee BH, et al. High frequency of DUOX2 mutations in transient or permanent congenital hypothyroidism with eutopic thyroid glands. Horm Res Paediatr 2014;82:252-60. https://doi.org/10.1159/000362235
  41. Matsuo K, Tanahashi Y, Mukai T, Suzuki S, Tajima T, Azuma H, et al. High prevalence of DUOX2 mutations in Japanese patients with permanent congenital hypothyroidism or transient hypothyroidism. J Pediatr Endocrinol Metab 2016;29:807-12.
  42. Vigone MC, Fugazzola L, Zamproni I, Passoni A, Di Candia S, Chiumello G, et al. Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum Mutat 2005;26:395.
  43. Liu S, Liu L, Niu X, Lu D, Xia H, Yan S. A novel missense mutation (I26M) in DUOXA2 causing congenital goiter hypothyroidism impairs NADPH oxidase activity but not protein expression. J Clin Endocrinol Metab 2015;100:1225-9. https://doi.org/10.1210/jc.2014-3964
  44. Gnidehou S, Caillou B, Talbot M, Ohayon R, Kaniewski J, Noel-Hudson MS, et al. Iodotyrosine dehalogenase 1 (DEHAL1) is a transmembrane protein involved in the recycling of iodide close to the thyroglobulin iodination site. FASEB J 2004;18:1574-6. https://doi.org/10.1096/fj.04-2023fje
  45. Moreno JC, Klootwijk W, van Toor H, Pinto G, D'Alessandro M, Leger A, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med 2008;358:1811-8. https://doi.org/10.1056/NEJMoa0706819
  46. Afink G, Kulik W, Overmars H, de Randamie J, Veenboer T, van Cruchten A, et al. Molecular characterization of iodotyrosine dehalogenase deficiency in patients with hypothyroidism. J Clin Endocrinol Metab 2008;93:4894-901. https://doi.org/10.1210/jc.2008-0865
  47. Keller-Petrot I, Leger J, Sergent-Alaoui A, de Labriolle-Vaylet C. Congenital hypothyroidism: role of nuclear medicine. Semin Nucl Med 2017;47:135-42. https://doi.org/10.1053/j.semnuclmed.2016.10.005
  48. Leslie WD. Thyroid scintigraphy and perchlorate discharge test in the diagnosis of congenital hypothyroidism. Eur J Nucl Med 1996;23:230. https://doi.org/10.1007/BF01731854
  49. Cavarzere P, Castanet M, Polak M, Raux-Demay MC, Cabrol S, Carel JC, et al. Clinical description of infants with congenital hypothyroidism and iodide organification defects. Horm Res 2008;70:240-8. https://doi.org/10.1159/000151597
  50. Sun F, Zhang JX, Yang CY, Gao GQ, Zhu WB, Han B, et al. The genetic characteristics of congenital hypothyroidism in China by comprehensive screening of 21 candidate genes. Eur J Endocrinol 2018;178:623-33. https://doi.org/10.1530/EJE-17-1017

Cited by

  1. Thyroid hormone therapy in congenital hypothyroidism and pediatric hypothyroidism vol.66, pp.1, 2019, https://doi.org/10.1007/s12020-019-02024-6
  2. The natural history of congenital hypothyroidism with delayed TSH elevation in neonatal intensive care newborns vol.92, pp.5, 2020, https://doi.org/10.1111/cen.14173
  3. Case Report: Expanding the Digenic Variants Involved in Thyroid Hormone Synthesis−10 New Cases of Congenital Hypothyroidism and a Literature Review vol.12, pp.None, 2018, https://doi.org/10.3389/fgene.2021.694683
  4. Thyroid Gene Mutations in Pregnant and Breastfeeding Women Diagnosed With Transient Congenital Hypothyroidism: Implications for the Offspring’s Health vol.12, pp.None, 2021, https://doi.org/10.3389/fendo.2021.679002
  5. Correlation of DUOX2 residual enzymatic activity with phenotype in congenital hypothyroidism caused by biallelic DUOX2 defects vol.100, pp.6, 2021, https://doi.org/10.1111/cge.14065
  6. Long-Term Course of Hypothyroidism Detected through Neonatal TSH Screening in a Population-Based Cohort of Very Preterm Infants Born at Less than 32 Weeks of Gestation vol.7, pp.4, 2018, https://doi.org/10.3390/ijns7040065