DOI QR코드

DOI QR Code

Freezing and Washing of Red Blood Cells Using Haemonetics ACP 215

Haemonetics ACP 215를 이용한 적혈구의 동결과 세척

  • Youn, Kyoung Won (Blood Transfusion Research Institute, Korean Red Cross) ;
  • Choi, Kyoung Young (Jungbu Blood Laboratory Center, Korean Red Cross) ;
  • Lee, Sun Ah (Department of Laboratory Medicine, Myongji St. Mary's Hospital) ;
  • Min, Hyuk Ki (Blood Transfusion Research Institute, Korean Red Cross) ;
  • Kim, Jaehyun (Blood Transfusion Research Institute, Korean Red Cross)
  • 윤경원 (대한적십자사 혈액수혈연구원) ;
  • 최경영 (대한적십자사 중부혈액검사센터) ;
  • 이선아 (명지성모병원 진단검사의학과) ;
  • 민혁기 (대한적십자사 혈액수혈연구원) ;
  • 김재현 (대한적십자사 혈액수혈연구원)
  • Received : 2018.09.07
  • Accepted : 2018.10.30
  • Published : 2018.12.31

Abstract

Background: The use of a functionally closed system for the glycerolization and deglycerolization of red blood cells (RBCs) allows for prolonged post-thaw storage for more than 24 hours. The aim of this study was to assess glycerolization and deglycerolization processing for RBCs using a high glycerol method in the automated, closed system provided by Haemonetics ACP 215. Methods: Thirty-five packed RBCs were glycerolized using the ACP 215 to a final concentration of 40% (wt/vol). The units were either frozen as such (n=30) or excess glycerol was removed (n=5) before freezing. After storage at $-80^{\circ}C$, the units were thawed, deglycerolized and resuspended in SAG-M. The frozen-thawed RBCs were stored at $4^{\circ}C$, and analyzed for their stability and in vitro quality. Results: No prefreeze excess glycerol removal units showed significantly less potassium leakage during post-thaw storage compared to the prefreeze excess glycerol removal units. All measurements of the stability and in vitro quality of thawed RBCs prepared from frozen RBCs without the prefreeze removal of excess glycerol during post-thaw storage at $4^{\circ}C$ for 7 days were acceptable to the American Blood Bank Association's standards and European standards. Conclusion: RBCs frozen without prefreeze removal of excess glycerol and the ACP 215 simplifies cryopreservation procedure and increases the stability of frozen-thawed RBCs. This increases the practical applicability of cryopreserved RBCs in blood transfusion practice.

배경: 적혈구를 폐쇄계에서 동결하고 세척하는 경우 동결해동적혈구의 보존기간을 24시간 이상으로 연장할 수 있다. 본 연구에서는 고농도글리세롤법과 자동화 장비인 Haemonetics ACP 215를 이용한 폐쇄계에서 적혈구의 동결과 세척과정을 평가하였다. 방법: ACP 215를 이용하여 35단위의 적혈구에 글리세롤을 최종농도가 40% (wt/vol)가 되도록 첨가하고 30단위는 즉시 동결하였으며, 나머지 5단위는 잔여 글리세롤을 제거한 다음 동결하였다. 동결한 적혈구는 $-80^{\circ}C$에 보관 후 해동 세척하여 SAG-M 보존액에 부유하고, $4^{\circ}C$에서 보존하면서 안정성 및 품질관리 지표를 분석하였다. 결과: 잔여 글리세롤을 제거하지 않은 동결적 혈구는 잔여 글리세롤을 제거한 동결해동적혈구에 비해 해동 후 보존기간 동안 칼륨 유출이 현저히 낮게 나타났다. 잔여 글리세롤을 제거하지 않은 동결해동적혈구를 해동 후 $4^{\circ}C$에서 7일간 보존하는 동안 측정한 모든 안정성 및 품질지표는 AABB와 유럽연합의 기준에 모두 적합하였다. 결론: ACP 215를 사용하여 동결 전 잔여 글리세롤을 제거하지 않고 바로 적혈구를 동결하는 방법은 동결보존과정이 단순하고 동결해동적혈구의 안정성이 향상되어 향후 수혈을 위한 동결적혈구에 현실적으로 적용가능성이 높은 것으로 생각된다.

Keywords

References

  1. Smith AU. Prevention of haemolysis during freezing and thawing of red blood-cells. Lancet 1950;2:910-1
  2. Valeri CR, Ragno G, Van Houten P, Rose L, Rose M, Egozy Y, et al. Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument. Transfusion 2005;45:1621-7 https://doi.org/10.1111/j.1537-2995.2005.00588.x
  3. Bandarenko N, Hay SN, Holmberg J, Whitley P, Taylor HL, Moroff G, et al. Extended storage of AS-1 and AS-3 leukoreduced red blood cells for 15 days after deglycerolization and resuspension in AS-3 using an automated closed system. Transfusion 2004;44:1656-62 https://doi.org/10.1111/j.1537-2995.2004.04101.x
  4. Bohonek M, Petras M, Turek I, Urbanova J, Hradek T, Chmatal P, et al. Quality evaluation of frozen apheresis red blood cell storage with 21-day postthaw storage in additive solution 3 and saline-adenine-glucose-mannitol: biochemical and chromium-51 recovery measures. Transfusion 2010;50:1007-13
  5. Lagerberg JW, Truijens-de Lange R, de Korte D, Verhoeven AJ. Altered processing of thawed red cells to improve the in vitro quality during postthaw storage at 4 degrees C. Transfusion 2007;47:2242-9 https://doi.org/10.1111/j.1537-2995.2007.01453.x
  6. Sen A, Khetarpal A. Comparative study of automated cryopreservation of red blood cells. Med J Armed Forces India 2013;69:345-50 https://doi.org/10.1016/j.mjafi.2013.06.005
  7. Lelkens CC, de Korte D, Lagerberg JW. Prolonged post-thaw shelf life of red cells frozen without prefreeze removal of excess glycerol. Vox Sang 2015;108:219-25 https://doi.org/10.1111/vox.12219
  8. Fairbanks VF, Ziesmer SC, O'Brien PC. Methods for measuring plasma hemoglobin in micromolar concentration compared. Clin Chem 1992;38:132-40
  9. Valeri CR, Ragno G, Pivacek LE, Cassidy GP, Srey R, Hansson-Wicher M, et al. An experiment with glycerol-frozen red blood cells stored at -80 degrees C for up to 37 years. Vox Sang 2000;79:168-74 https://doi.org/10.1046/j.1423-0410.2000.7930168.x
  10. Cregan P, Donegan E, Gotelli G. Hemolytic transfusion reaction following transfusion of frozen and washed autologous red cells. Transfusion 1991;31:172-5 https://doi.org/10.1046/j.1537-2995.1991.31291142950.x
  11. Bechdolt S, Schroeder LK, Samia C, Schmidt PJ. In vivo hemolysis of deglycerolized red blood cells. Arch Pathol Lab Med 1986;110:344-5
  12. Vlaar AP, Kulik W, Nieuwland R, Peters CP, Tool AT, van Bruggen R, et al. Accumulation of bioactive lipids during storage of blood products is not cell but plasma derived and temperature dependent. Transfusion 2011;51:2358-66 https://doi.org/10.1111/j.1537-2995.2011.03177.x
  13. Shanwell A, Kristiansson M, Remberger M, Ringden O. Generation of cytokines in red cell concentrates during storage is prevented by prestorage white cell reduction. Transfusion 1997;37:678-84 https://doi.org/10.1046/j.1537-2995.1997.37797369441.x
  14. Arnaud FG, Meryman HT. WBC reduction in cryopreserved RBC units. Transfusion 2003;43:517-25 https://doi.org/10.1046/j.1537-2995.2003.00358.x
  15. European Directorate for the Quality of Medicine and HealthCare (EDQM). Guide to the preparation, use and quality assurance of blood components. 18th ed. Strasbourg, France: Council of Europe, 2015:260-64
  16. European Directorate for the Quality of Medicine and HealthCare (EDQM). Guide to the preparation, use and quality assurance of blood components. 19th ed. Strasbourg, France: Council of Europe, 2017:318-23
  17. Fung MK, Eder AF, Spitalnik SL, Westhoff CM. Technical manual. 19th ed. Bethesda, Maryland: American Association of Blood Banks, 2017:457-88
  18. Park Y, Best CA, Auth T, Gov NS, Safran SA, Popescu G, et al. Metabolic remodeling of the human red blood cell membrane. Proc Natl Acad Sci USA 2010;107:1289-94 https://doi.org/10.1073/pnas.0910785107
  19. Verhoeven AJ, Hilarius PM, Dekkers DW, Lagerberg JW, de Korte D. Prolonged storage of red blood cells affects aminophospholipid translocase activity. Vox Sang 2006;91:244-51 https://doi.org/10.1111/j.1423-0410.2006.00822.x
  20. van der Meer PF, Pietersz RN. The effect of plastic overwraps on storage measures of red cell concentrates. Vox Sang 2007;93:176-8 https://doi.org/10.1111/j.1423-0410.2007.00934.x
  21. Lecak J, Scott K, Young C, Hannon J, Acker JP. Evaluation of red blood cells stored at -80 degrees C in excess of 10 years. Transfusion 2004;44:1306-13 https://doi.org/10.1111/j.1537-2995.2004.03271.x
  22. List J, Horvath M, Leitner GC, Weigel G. Cryopreservation of red blood cell units with a modified method of glycerolization and deglycerolization with the ACP 215 device complies with American and European requirements. Immunohematology 2012;28:67-73
  23. Choi KH, Rhu JH, Park HR, Kim HO. The preparation of frozen red blood cells and a procedure for deglycerolizing frozen RBCs using COBE 2991 blood cell processor. Korean J Blood Transfusion 2001;12:189-96
  24. Jung OJ, Kim MJ, Lee MK, Chung HR, Oh DJ, Lim AH, et al. Cryopreservation and thawing of red blood cells using Haemonetics ACP 215. Korean J Lab Med 2005;25:347-51