DOI QR코드

DOI QR Code

Peripapillary Retinal Nerve Fiber Layer Thicknesses Did Not Change in Long-term Hydroxychloroquine Users

  • Lee, Eun Jung (Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Sang Jin (Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Han, Jong Chul (Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Eo, Doo Ri (Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Min Gyu (Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Ham, Don-Il (Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kang, Se Woong (Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kee, Changwon (Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee, Jaejoon (Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Cha, Hoon-Suk (Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Koh, Eun-Mi (Division of Rheumatology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2018.01.02
  • Accepted : 2018.03.20
  • Published : 2018.12.05

Abstract

Purpose: To evaluate changes in the peripapillary retinal nerve fiber layer (RNFL) thicknesses using spectral-domain optical coherence tomography (SD-OCT) in hydroxychloroquine (HCQ) users. Methods: The medical records of HCQ users were retrospectively reviewed. In these HCQ users, an automated perimetry, fundus autofluorescence photography, and SD-OCT with peripapillary RNFL thickness measurements were performed. The peripapillary RNFL thicknesses were compared between the HCQ users and the control groups. The relationships between the RNFL thicknesses and the duration or cumulative dosage of HCQ use were analyzed. Results: This study included 77 HCQ users and 20 normal controls. The mean duration of HCQ usage was $63.6{\pm}38.4$ months, and the cumulative dose of HCQ was $528.1{\pm}3.44g$. Six patients developed HCQ retinopathy. Global and six sectoral RNFL thicknesses of the HCQ users did not significantly decrease compared to those of the normal controls. No significant correlation was found between the RNFL thickness and the duration of use or cumulative dose. The eyes of those with HCQ retinopathy had temporal peripapillary RNFL thicknesses significantly greater than that of normal controls. Conclusions: The peripapillary RNFL thicknesses did not change in the HCQ users and did not correlate with the duration of HCQ use or cumulative doses of HCQ. RNFL thickness is not a useful biomarker for the early detection of HCQ retinal toxicity.

Keywords

Acknowledgement

Supported by : Ministry of Health & Welfare

References

  1. Bernstein HN. Chloroquine ocular toxicity. Surv Ophthalmol 1967;12:415-47.
  2. Mavrikakis I, Sfikakis PP, Mavrikakis E, et al. The incidence of irreversible retinal toxicity in patients treated with hydroxychloroquine: a reappraisal. Ophthalmology 2003;110:1321-6. https://doi.org/10.1016/S0161-6420(03)00409-3
  3. Marmor MF, Kellner U, Lai TY, et al. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology 2016;123:1386-94. https://doi.org/10.1016/j.ophtha.2016.01.058
  4. Melles RB, Marmor MF. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol 2014;132:1453-60. https://doi.org/10.1001/jamaophthalmol.2014.3459
  5. Melles RB, Marmor MF. Pericentral retinopathy and racial differences in hydroxychloroquine toxicity. Ophthalmology 2015;122:110-6. https://doi.org/10.1016/j.ophtha.2014.07.018
  6. Marmor MF, Kellner U, Lai TY, et al. Revised recommendations on screening for chloroquine and hydroxychloroquine retinopathy. Ophthalmology 2011;118:415-22. https://doi.org/10.1016/j.ophtha.2010.11.017
  7. Marmor MF, Hu J. Effect of disease stage on progression of hydroxychloroquine retinopathy. JAMA Ophthalmol 2014;132:1105-12. https://doi.org/10.1001/jamaophthalmol.2014.1099
  8. Hallberg A, Naeser P, Andersson A. Effects of long-term chloroquine exposure on the phospholipid metabolism in retina and pigment epithelium of the mouse. Acta Ophthalmol (Copenh) 1990;68:125-30.
  9. Rosenthal AR, Kolb H, Bergsma D, et al. Chloroquine retinopathy in the rhesus monkey. Invest Ophthalmol Vis Sci 1978;17:1158-75.
  10. Bonanomi MT, Dantas NC, Medeiros FA. Retinal nerve fibre layer thickness measurements in patients using chloroquine. Clin Exp Ophthalmol 2006;34:130-6. https://doi.org/10.1111/j.1442-9071.2006.01167.x
  11. Xiaoyun MA, Dongyi HE, Linping HE. Assessing chloroquine toxicity in RA patients using retinal nerve fibre layer thickness, multifocal electroretinography and visual field test. Br J Ophthalmol 2010;94:1632-6. https://doi.org/10.1136/bjo.2009.171082
  12. Pasadhika S, Fishman GA. Effects of chronic exposure to hydroxychloroquine or chloroquine on inner retinal structures. Eye (Lond) 2010;24:340-6. https://doi.org/10.1038/eye.2009.65
  13. Tan BB, Natividad M, Chua KC, Yip LW. Comparison of retinal nerve fiber layer measurement between 2 spectral domain OCT instruments. J Glaucoma 2012;21:266-73. https://doi.org/10.1097/IJG.0b013e3182071cdd
  14. Asrani S, Essaid L, Alder BD, Santiago-Turla C. Artifacts in spectral-domain optical coherence tomography measurements in glaucoma. JAMA Ophthalmol 2014;132:396-402. https://doi.org/10.1001/jamaophthalmol.2013.7974
  15. Wheat JL, Rangaswamy NV, Harwerth RS. Correlating RNFL thickness by OCT with perimetric sensitivity in glaucoma patients. J Glaucoma 2012;21:95-101.
  16. Costello F, Coupland S, Hodge W, et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006;59:963-9. https://doi.org/10.1002/ana.20851
  17. Ratchford JN, Quigg ME, Conger A, et al. Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 2009;73:302-8. https://doi.org/10.1212/WNL.0b013e3181af78b8
  18. Lee MG, Kim SJ, Ham DI, et al. Macular retinal ganglion cell-inner plexiform layer thickness in patients on hydroxychloroquine therapy. Invest Ophthalmol Vis Sci 2014;56:396-402.
  19. Uslu H, Gurler B, Yildirim A, et al. Effect of hydroxychloroquine on the retinal layers: a quantitative evaluation with spectral-domain optical coherence tomography. J Ophthalmol 2016;2016:8643174.
  20. Hoesl LM, Tornow RP, Schrems WA, et al. Glaucoma diagnostic performance of GDxVCC and spectralis OCT on eyes with atypical retardation pattern. J Glaucoma 2013;22:317-24. https://doi.org/10.1097/IJG.0b013e318237c8c5
  21. Lemij HG. The value of polarimetry in the evaluation of the optic nerve in glaucoma. Curr Opin Ophthalmol 2001;12:138-42. https://doi.org/10.1097/00055735-200104000-00010
  22. Schallenberg M, Dekowski D, Kremmer S, et al. Comparison of Spectralis-OCT, GDxVCC and GDxECC in assessing retinal nerve fiber layer (RNFL) in glaucomatous patients. Graefes Arch Clin Exp Ophthalmol 2013;251:1343-53. https://doi.org/10.1007/s00417-012-2219-x
  23. Bagga H, Greenfield DS, Feuer W, Knighton RW. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Am J Ophthalmol 2003;135:521-9. https://doi.org/10.1016/S0002-9394(02)02077-9
  24. Sehi M, Ume S, Greenfield DS. Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2007;48:2099-104. https://doi.org/10.1167/iovs.06-1087
  25. Kook MS, Cho HS, Seong M, Choi J. Scanning laser polarimetry using variable corneal compensation in the detection of glaucoma with localized visual field defects. Ophthalmology 2005;112:1970-8. https://doi.org/10.1016/j.ophtha.2005.06.023
  26. Garas A, Toth M, Vargha P, Hollo G. Comparison of repeatability of retinal nerve fiber layer thickness measurement made using the RTVue Fourier-domain optical coherence tomograph and the GDx scanning laser polarimeter with variable or enhanced corneal compensation. J Glaucoma 2010;19:412-7. https://doi.org/10.1097/IJG.0b013e3181bdb549
  27. Oh JH, Kim YY. Scanning laser polarimetry and optical coherence tomography for detection of retinal nerve fiber layer defects. Korean J Ophthalmol 2009;23:169-75. https://doi.org/10.3341/kjo.2009.23.3.169
  28. Bagga H, Greenfield DS, Knighton RW. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease. Invest Ophthalmol Vis Sci 2003;44:1969-76. https://doi.org/10.1167/iovs.02-0923
  29. Giani A, Cigada M, Esmaili DD, et al. Artifacts in automatic retinal segmentation using different optical coherence tomography instruments. Retina 2010;30:607-16. https://doi.org/10.1097/IAE.0b013e3181c2e09d
  30. Sull AC, Vuong LN, Price LL, et al. Comparison of spectral/Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina 2010;30:235-45. https://doi.org/10.1097/IAE.0b013e3181bd2c3b
  31. Anastasakis A, Genead MA, McAnany JJ, Fishman GA. Evaluation of retinal nerve fiber layer thickness in patients with retinitis pigmentosa using spectral-domain optical coherence tomography. Retina 2012;32:358-63. https://doi.org/10.1097/IAE.0b013e31821a891a
  32. Hwang YH, Kim SW, Kim YY, et al. Optic nerve head, retinal nerve fiber layer, and macular thickness measurements in young patients with retinitis pigmentosa. Curr Eye Res 2012;37:914-20. https://doi.org/10.3109/02713683.2012.688163
  33. Walia S, Fishman GA. Retinal nerve fiber layer analysis in RP patients using Fourier-domain OCT. Invest Ophthalmol Vis Sci 2008;49:3525-8. https://doi.org/10.1167/iovs.08-1842
  34. Han J, Lee K, Rhiu S, et al. Linezolid-associated optic neuropathy in a patient with drug-resistant tuberculosis. J Neuroophthalmol 2013;33:316-8. https://doi.org/10.1097/WNO.0b013e31829b4265
  35. Barboni P, Carbonelli M, Savini G, et al. Natural history of Leber's hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 2010;117:623-7. https://doi.org/10.1016/j.ophtha.2009.07.026
  36. Hood DC, Lin CE, Lazow MA, et al. Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2009;50:2328-36. https://doi.org/10.1167/iovs.08-2936
  37. Jacobson SG, Sumaroka A, Aleman TS, et al. Evidence for retinal remodelling in retinitis pigmentosa caused by PDE6B mutation. Br J Ophthalmol 2007;91:699-701.

Cited by

  1. Hydroxychloroquine : Retinopathy: 6 case reports vol.1738, pp.1, 2018, https://doi.org/10.1007/s40278-019-57516-1
  2. Optic nerve analysis in COVID‐19 patients vol.93, pp.1, 2018, https://doi.org/10.1002/jmv.26290